Bender Ralf, Augustin Thomas, Blettner Maria
Institute for Quality and Efficiency in Health Care, Cologne, Germany.
Stat Med. 2005 Jun 15;24(11):1713-23. doi: 10.1002/sim.2059.
Simulation studies present an important statistical tool to investigate the performance, properties and adequacy of statistical models in pre-specified situations. One of the most important statistical models in medical research is the proportional hazards model of Cox. In this paper, techniques to generate survival times for simulation studies regarding Cox proportional hazards models are presented. A general formula describing the relation between the hazard and the corresponding survival time of the Cox model is derived, which is useful in simulation studies. It is shown how the exponential, the Weibull and the Gompertz distribution can be applied to generate appropriate survival times for simulation studies. Additionally, the general relation between hazard and survival time can be used to develop own distributions for special situations and to handle flexibly parameterized proportional hazards models. The use of distributions other than the exponential distribution is indispensable to investigate the characteristics of the Cox proportional hazards model, especially in non-standard situations, where the partial likelihood depends on the baseline hazard. A simulation study investigating the effect of measurement errors in the German Uranium Miners Cohort Study is considered to illustrate the proposed simulation techniques and to emphasize the importance of a careful modelling of the baseline hazard in Cox models.
模拟研究是一种重要的统计工具,用于在预先设定的情况下研究统计模型的性能、特性和适用性。医学研究中最重要的统计模型之一是Cox比例风险模型。本文介绍了针对Cox比例风险模型的模拟研究生成生存时间的技术。推导了一个描述Cox模型风险与相应生存时间之间关系的通用公式,该公式在模拟研究中很有用。展示了如何应用指数分布、威布尔分布和冈珀茨分布为模拟研究生成合适的生存时间。此外,风险与生存时间之间的一般关系可用于为特殊情况开发自定义分布,并灵活处理参数化的比例风险模型。使用指数分布以外的分布对于研究Cox比例风险模型的特征是必不可少的,特别是在部分似然依赖于基线风险的非标准情况下。考虑一项在德国铀矿矿工队列研究中调查测量误差影响的模拟研究,以说明所提出的模拟技术,并强调在Cox模型中仔细建模基线风险的重要性。