Mandal Biman B, Kundu Subhas C
Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India.
Biotechnol Bioeng. 2008 Aug 15;100(6):1237-50. doi: 10.1002/bit.21835.
The possibility of using wild non-mulberry silk protein as a biopolymer remains unexplored compared to domesticated mulberry silk protein. One of the main reasons for this was for not having any suitable method of extraction of silk protein fibroin from cocoons and silk glands. In this study non-bioengineered non-mulberry silk gland fibroin protein from tropical tasar silkworm Antheraea mylitta, is regenerated and characterized using 1% (w/v) sodium dodecyl sulfate (SDS). The new technique is important and unique because it uses a mild surfactant for fibroin dissolution and is advantageous over other previous reported techniques using chaotropic salts. Fabricated fibroin films are smooth as confirmed by atomic force microscopy. Circular dichroism spectrometry along with Fourier transformed infrared spectroscopy and X-ray diffraction reveal random coil/alpha-helix conformations in regenerated fibroin which transform to beta-sheets, resulting in crystalline structure and protein insolubility through ethanol treatment. Differential scanning calorimetry shows an increase in glass transition (Tg) temperature and enhanced degradation temperature on alcohol treatment. Enhanced cell attachment and viability of AH927 feline fibroblasts were observed on fibroin matrices. Higher mechanical strength along with controllable water stability of regenerated gland fibroin films make non-mulberry Indian tropical tasar silk gland fibroin protein a promising biomaterial for tissue engineering applications.
与家养桑蚕丝蛋白相比,野生非桑蚕丝蛋白作为生物聚合物的应用可能性尚未得到探索。造成这种情况的主要原因之一是没有任何从蚕茧和丝腺中提取丝素蛋白的合适方法。在本研究中,使用1%(w/v)十二烷基硫酸钠(SDS)对热带柞蚕(Antheraea mylitta)的非生物工程化非桑蚕丝腺丝素蛋白进行再生和表征。这项新技术很重要且独特,因为它使用温和的表面活性剂来溶解丝素蛋白,比其他先前报道的使用离液盐的技术更具优势。原子力显微镜证实制备的丝素蛋白膜很光滑。圆二色光谱、傅里叶变换红外光谱和X射线衍射显示,再生丝素蛋白中存在无规卷曲/α-螺旋构象,经乙醇处理后转变为β-折叠,形成晶体结构并导致蛋白质不溶性。差示扫描量热法表明,经酒精处理后玻璃化转变(Tg)温度升高,降解温度提高。在丝素蛋白基质上观察到AH927猫成纤维细胞的细胞附着和活力增强。再生腺丝素蛋白膜具有更高的机械强度和可控的水稳定性,使其成为组织工程应用中有前景的生物材料。