Kang Hyoung Jin, Oh Yongtaek, Chun Sung-Min, Seo Young Jin, Shin Hee Young, Kim Chul Woo, Ahn Hyo Seop, Han Byoung-Don
Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
Mol Cell Probes. 2008 Jun;22(3):193-200. doi: 10.1016/j.mcp.2008.02.001. Epub 2008 Feb 21.
Genetic polymorphism among patients with acute lymphoblastic leukemia (ALL) is an important factor in the effectiveness and toxicity of anti-leukemic drugs. Genotyping of various polymorphisms that impact the outcome of anti-leukemic drug therapy (pharmacogenetics) presents an attractive approach for developing individualized therapy. We developed an easy and accurate method of analyzing multiple genes using a small amount of DNA, which we termed TotalPlex amplification. We used 16 pairs of specific bulging specific primers (SBS primers) for simultaneous amplification of 16 loci in a single PCR tube. Sixteen single nucleotide polymorphisms (SNPs) (CYP3A41B A>G, CYP3A53 G>A, GSTP1 313 A>G, GSTM1 deletion, GSTT1 deletion, MDR1 exon 21 G>T/A, MDR1 exon 26 C>T, MTHFR 677 C>T, MTHFR 1298 A>C, NR3C1 1088 A>G, RFC 80 G>A, TPMT 238 G>C, TPMT 460 G>A, TPMT 719 A>G, VDR intron 8 G>A, VDR FokI T>C) that have been implicated in the pharmacogenetics of ALL therapy were analyzed by TotalPlex amplification and SNP genotyping. We successfully amplified specific gene fragments using 16 pairs of primers in one PCR reaction tube with minimal spurious amplification products using TotalPlex amplification coupled to a multiplexed bead array detection system. The genotypes of 16 loci from 34 different genomic DNA (gDNA) samples derived using the TotalPlex system were consistent with the results of several standard genotyping methods, including automatic sequencing, PCR restriction fragment length polymorphism (RFLP) analysis, PCR, and allele-specific PCR (AS-PCR). Thus, the TotalPlex system represents a useful method of amplification that can improve the time, cost, and sample size required for high-throughput pharmacogenetic analysis of SNPs.
急性淋巴细胞白血病(ALL)患者的基因多态性是影响抗白血病药物疗效和毒性的重要因素。对影响抗白血病药物治疗结果的各种多态性进行基因分型(药物遗传学)为制定个体化治疗提供了一种有吸引力的方法。我们开发了一种使用少量DNA分析多个基因的简便准确方法,我们将其称为全基因组扩增。我们使用16对特异性凸起特异性引物(SBS引物)在单个PCR管中同时扩增16个位点。通过全基因组扩增和SNP基因分型分析了16个单核苷酸多态性(SNP)(CYP3A41B A>G、CYP3A53 G>A、GSTP1 313 A>G、GSTM1缺失、GSTT1缺失、MDR1外显子21 G>T/A、MDR1外显子26 C>T、MTHFR 677 C>T、MTHFR 1298 A>C、NR3C1 1088 A>G、RFC 80 G>A、TPMT 238 G>C、TPMT 460 G>A、TPMT 719 A>G、VDR内含子8 G>A、VDR FokI T>C),这些多态性与ALL治疗的药物遗传学有关。我们成功地在一个PCR反应管中使用16对引物扩增了特定基因片段,通过全基因组扩增与多重微珠阵列检测系统结合,产生的假扩增产物最少。使用全基因组系统从34个不同的基因组DNA(gDNA)样本中获得的16个位点的基因型与几种标准基因分型方法的结果一致,包括自动测序、PCR限制性片段长度多态性(RFLP)分析、PCR和等位基因特异性PCR(AS-PCR)。因此,全基因组系统是一种有用的扩增方法,可以改善高通量SNP药物遗传学分析所需的时间、成本和样本量。