Acharya Chaitanya R, Hsu David S, Anders Carey K, Anguiano Ariel, Salter Kelly H, Walters Kelli S, Redman Richard C, Tuchman Sascha A, Moylan Cynthia A, Mukherjee Sayan, Barry William T, Dressman Holly K, Ginsburg Geoffrey S, Marcom Kelly P, Garman Katherine S, Lyman Gary H, Nevins Joseph R, Potti Anil
Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA.
JAMA. 2008 Apr 2;299(13):1574-87. doi: 10.1001/jama.299.13.1574.
Gene expression profiling may be useful for prognostic and therapeutic strategies in breast carcinoma.
To demonstrate the value in integrating genomic information with clinical and pathological risk factors, to refine prognosis, and to improve therapeutic strategies for early stage breast cancer.
DESIGN, SETTING, AND PATIENTS: Retrospective study of patients with early stage breast carcinoma who were candidates for adjuvant chemotherapy; 964 clinically annotated breast tumor samples (573 in the initial discovery set and 391 in the validation cohort) with corresponding microarray data were used. All patients were assigned relapse risk scores based on their respective clinicopathological features. Signatures representing oncogenic pathway activation and tumor biology/microenvironment status were applied to these samples to obtain patterns of deregulation that correspond with relapse risk scores to refine prognosis with the clinicopathological prognostic model alone. Predictors of chemotherapeutic response were also applied to further characterize clinically relevant heterogeneity in early stage breast cancer.
Gene expression signatures and clinicopathological variables in early stage breast cancer to determine a refined estimation of relapse-free survival and sensitivity to chemotherapy.
In the initial data set of 573 patients, prognostically significant clusters representing patterns of oncogenic pathway activation and tumor biology/microenvironment states were identified within the low-risk (log-rank P = .004), intermediate-risk (log-rank P = .01), and high-risk (log-rank P = .003) model cohorts, representing clinically important genomic subphenotypes of breast cancer. As an example, in the low-risk cohort, of 6 prognostically significant clusters, patients in cluster 4 had an inferior relapse-free survival vs patients in cluster 1 (log-rank P = .004) and cluster 5 (log-rank P = .03). Median relapse-free survival for patients in cluster 4 was 16 months less than for patients in cluster 1 (95% CI, 7.5-24.5 months) and 19 months less than for patients in cluster 5 (95% CI, 10.5-27.5 months). Multivariate analyses confirmed the independent prognostic value of the genomic clusters (low risk, P = .05; high risk, P = .02). The reproducibility and validity of these patterns of pathway deregulation in predicting relapse risk was established using related but not identical clusters in the independent validation cohort. The prognostic clinicogenomic clusters also have unique sensitivity patterns to commonly used cytotoxic therapies.
These results provide preliminary evidence that incorporation of gene expression signatures into clinical risk stratification can refine prognosis. Prospective studies are needed to determine the value of this approach for individualizing therapeutic strategies.
基因表达谱分析可能有助于乳腺癌的预后评估和治疗策略制定。
证明整合基因组信息与临床和病理风险因素的价值,优化预后,并改善早期乳腺癌的治疗策略。
设计、研究地点和患者:对适合辅助化疗的早期乳腺癌患者进行回顾性研究;使用了964份带有临床注释的乳腺肿瘤样本(初始发现集中有573份,验证队列中有391份)以及相应的微阵列数据。所有患者根据其各自的临床病理特征被赋予复发风险评分。将代表致癌途径激活和肿瘤生物学/微环境状态的特征应用于这些样本,以获得与复发风险评分相对应的失调模式,从而仅通过临床病理预后模型来优化预后。还应用了化疗反应预测指标,以进一步表征早期乳腺癌临床上相关的异质性。
早期乳腺癌中的基因表达特征和临床病理变量,以确定对无复发生存率和化疗敏感性的精确估计。
在573例患者的初始数据集中,在低风险(对数秩检验P = 0.004)、中风险(对数秩检验P = 0.01)和高风险(对数秩检验P = 0.003)模型队列中,识别出了代表致癌途径激活模式和肿瘤生物学/微环境状态的具有预后意义的聚类,这些聚类代表了乳腺癌临床上重要的基因组亚表型。例如,在低风险队列的6个具有预后意义的聚类中,聚类4中的患者与聚类1中的患者相比无复发生存率较差(对数秩检验P = 0.004),与聚类5中的患者相比也较差(对数秩检验P = 0.03)。聚类4中患者的无复发生存期中位数比聚类1中的患者短16个月(95%可信区间,7.5 - 24.5个月),比聚类5中的患者短19个月(95%可信区间,10.5 - 27.5个月)。多变量分析证实了基因组聚类的独立预后价值(低风险,P = 0.05;高风险,P = 0.02)。在独立验证队列中使用相关但不完全相同的聚类,确定了这些途径失调模式在预测复发风险方面的可重复性和有效性。预后临床基因组聚类对常用的细胞毒性疗法也具有独特的敏感性模式。
这些结果提供了初步证据,表明将基因表达特征纳入临床风险分层可以优化预后。需要进行前瞻性研究来确定这种方法在个性化治疗策略方面的价值。