文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三阴性乳腺癌的放射影像学生物标志物:关于人工智能作用及未来发展方向的文献综述

Radiologic imaging biomarkers in triple-negative breast cancer: a literature review about the role of artificial intelligence and the way forward.

作者信息

Bhalla Kanika, Xiao Qi, Luna José Marcio, Podany Emily, Ahmad Tabassum, Ademuyiwa Foluso O, Davis Andrew, Bennett Debbie Lee, Gastounioti Aimilia

机构信息

Breast Image Computing Lab, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States.

Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States.

出版信息

BJR Artif Intell. 2024 Nov 13;1(1):ubae016. doi: 10.1093/bjrai/ubae016. eCollection 2024 Jan.


DOI:10.1093/bjrai/ubae016
PMID:40201726
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11974408/
Abstract

Breast cancer is one of the most common and deadly cancers in women. Triple-negative breast cancer (TNBC) accounts for approximately 10%-15% of breast cancer diagnoses and is an aggressive molecular breast cancer subtype associated with important challenges in its diagnosis, treatment, and prognostication. This poses an urgent need for developing more effective and personalized imaging biomarkers for TNBC. Towards this direction, artificial intelligence (AI) for radiologic imaging holds a prominent role, leveraging unique advantages of radiologic breast images, being used routinely for TNBC diagnosis, staging, and treatment planning, and offering high-resolution whole-tumour visualization, combined with the immense potential of AI to elucidate anatomical and functional properties of tumours that may not be easily perceived by the human eye. In this review, we synthesize the current state-of-the-art radiologic imaging applications of AI in assisting TNBC diagnosis, treatment, and prognostication. Our goal is to provide a comprehensive overview of radiomic and deep learning-based AI developments and their impact on advancing TNBC management over the last decade (2013-2024). For completeness of the review, we start with a brief introduction of AI, radiomics, and deep learning. Next, we focus on clinically relevant AI-based diagnostic, predictive, and prognostic models for radiologic breast images evaluated in TNBC. We conclude with opportunities and future directions for AI towards advancing diagnosis, treatment response predictions, and prognostic evaluations for TNBC.

摘要

乳腺癌是女性中最常见且致命的癌症之一。三阴性乳腺癌(TNBC)约占乳腺癌诊断病例的10%-15%,是一种侵袭性分子乳腺癌亚型,在其诊断、治疗和预后方面面临重大挑战。这迫切需要为TNBC开发更有效、更个性化的影像生物标志物。朝着这个方向,用于放射成像的人工智能(AI)发挥着重要作用,它利用乳腺放射图像的独特优势,常规用于TNBC的诊断、分期和治疗规划,并提供高分辨率的全肿瘤可视化,同时结合了AI的巨大潜力,以阐明人眼可能不易察觉的肿瘤的解剖和功能特性。在这篇综述中,我们综合了AI在辅助TNBC诊断、治疗和预后方面的当前先进放射成像应用。我们的目标是全面概述基于影像组学和深度学习的AI发展及其在过去十年(2013-2024年)对推进TNBC管理的影响。为使综述完整,我们首先简要介绍AI、影像组学和深度学习。接下来,我们重点关注在TNBC中评估的基于AI的乳腺放射图像临床相关诊断、预测和预后模型。我们最后讨论AI在推进TNBC诊断、治疗反应预测和预后评估方面的机遇和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e2/11974408/ed5c2f8be0b6/ubae016f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e2/11974408/ed5c2f8be0b6/ubae016f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e2/11974408/ed5c2f8be0b6/ubae016f1.jpg

相似文献

[1]
Radiologic imaging biomarkers in triple-negative breast cancer: a literature review about the role of artificial intelligence and the way forward.

BJR Artif Intell. 2024-11-13

[2]
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.

medRxiv. 2025-6-27

[3]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[4]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[5]
Systemic therapies for preventing or treating aromatase inhibitor-induced musculoskeletal symptoms in early breast cancer.

Cochrane Database Syst Rev. 2022-1-10

[6]
Mammographic density, endocrine therapy and breast cancer risk: a prognostic and predictive biomarker review.

Cochrane Database Syst Rev. 2021-10-26

[7]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[8]
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

Cochrane Database Syst Rev. 2015-9-29

[9]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[10]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

引用本文的文献

[1]
Enhanced nuclear information fusion and visual transformer for pathological breast cancer image classification.

Sci Rep. 2025-6-3

[2]
Deep learning network enhances imaging quality of low-b-value diffusion-weighted imaging and improves lesion detection in prostate cancer.

BMC Cancer. 2025-5-27

本文引用的文献

[1]
Advancements in triple-negative breast cancer sub-typing, diagnosis and treatment with assistance of artificial intelligence : a focused review.

J Cancer Res Clin Oncol. 2024-8-6

[2]
Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study.

Clin Breast Cancer. 2024-4

[3]
Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis.

Diagn Interv Imaging. 2024-5

[4]
Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge.

Radiol Imaging Cancer. 2024-1

[5]
Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes.

Acad Radiol. 2024-6

[6]
Clinical and Biomarker Findings of Neoadjuvant Pembrolizumab and Carboplatin Plus Docetaxel in Triple-Negative Breast Cancer: NeoPACT Phase 2 Clinical Trial.

JAMA Oncol. 2024-2-1

[7]
Predicting Breast Cancer Subtypes Using Magnetic Resonance Imaging Based Radiomics With Automatic Segmentation.

J Comput Assist Tomogr.

[8]
A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer.

Radiol Imaging Cancer. 2023-7

[9]
A Review of AI-Based Radiomics and Computational Pathology Approaches in Triple-Negative Breast Cancer: Current Applications and Perspectives.

Clin Breast Cancer. 2023-12

[10]
Conventional ultrasound and contrast-enhanced ultrasound radiomics in breast cancer and molecular subtype diagnosis.

Front Oncol. 2023-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索