Suppr超能文献

重新思考蛋白酶体的进化:两种新型细菌蛋白酶体。

Rethinking proteasome evolution: two novel bacterial proteasomes.

作者信息

Valas Ruben E, Bourne Philip E

机构信息

Bioinformatics Program, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

J Mol Evol. 2008 May;66(5):494-504. doi: 10.1007/s00239-008-9075-7. Epub 2008 Apr 4.

Abstract

The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Despite this variation in complexity, all the proteasomes are composed of homologous subunits. We searched 238 complete bacterial genomes for structures related to the proteasome and found evidence of two novel groups of bacterial proteasomes. The first, which we name Anbu, is sparsely distributed among cyanobacteria and proteobacteria. We hypothesize that Anbu must be very ancient because of its distribution within the cyanobacteria, and that it has been lost in many more recent species. We also present evidence for a fourth type of bacterial proteasome found in a few beta-proteobacteria, which we call beta-proteobacteria proteasome homologue (BPH). Sequence and structural analyses show that Anbu and BPH are both distinct from known bacterial proteasomes but have homologous structures. Anbu is encoded by one gene, so we postulate a duplication of Anbu created the 20S proteasome. Anbu's function appears to be related to transglutaminase activity, not the general stress response associated with HslV. We have found different combinations of Anbu, BPH, and HslV within these bacterial genomes, which raises questions about specialized protein degradation systems.

摘要

蛋白酶体是一种降解蛋白质的多亚基结构。蛋白质降解是调节的一个重要组成部分,因为蛋白质可能会错误折叠、受损或变得不再需要。蛋白酶体及其同源物在复杂性上有很大差异:从细菌中由1个基因编码的HslV(热休克位点v)到真核生物的20S蛋白酶体,后者由超过14个基因编码。尽管在复杂性上存在这种差异,但所有蛋白酶体都是由同源亚基组成的。我们在238个完整的细菌基因组中搜索与蛋白酶体相关的结构,发现了两组新型细菌蛋白酶体的证据。第一组,我们命名为Anbu,稀疏地分布在蓝细菌和变形菌中。我们推测Anbu一定非常古老,因为它在蓝细菌中的分布情况,并且它在许多较新的物种中已经丢失。我们还展示了在一些β-变形菌中发现的第四种细菌蛋白酶体的证据,我们称之为β-变形菌蛋白酶体同源物(BPH)。序列和结构分析表明,Anbu和BPH都与已知的细菌蛋白酶体不同,但具有同源结构。Anbu由一个基因编码,因此我们推测Anbu基因的复制产生了20S蛋白酶体。Anbu的功能似乎与转谷氨酰胺酶活性有关,而不是与HslV相关的一般应激反应。我们在这些细菌基因组中发现了Anbu、BPH和HslV的不同组合,这引发了关于专门蛋白质降解系统的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aab/3235984/2b4d21460bd3/239_2008_9075_Fig1_HTML.jpg

相似文献

1
Rethinking proteasome evolution: two novel bacterial proteasomes.
J Mol Evol. 2008 May;66(5):494-504. doi: 10.1007/s00239-008-9075-7. Epub 2008 Apr 4.
2
The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers.
J Mol Biol. 2018 Mar 2;430(5):611-627. doi: 10.1016/j.jmb.2017.11.016. Epub 2017 Dec 16.
4
A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome.
J Mol Biol. 2003 Mar 7;326(5):1437-48. doi: 10.1016/s0022-2836(02)01470-5.
5
The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System.
Structure. 2017 Jun 6;25(6):834-845.e5. doi: 10.1016/j.str.2017.04.005. Epub 2017 May 4.
7
Proteasome-related HslU and HslV genes typical of eubacteria are widespread in eukaryotes.
J Mol Evol. 2006 Oct;63(4):504-12. doi: 10.1007/s00239-005-0282-1. Epub 2006 Oct 4.
9
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes.
Nature. 2005 Oct 27;437(7063):1381-5. doi: 10.1038/nature04106.
10
Mapping the murine cardiac 26S proteasome complexes.
Circ Res. 2006 Aug 18;99(4):362-71. doi: 10.1161/01.RES.0000237386.98506.f7. Epub 2006 Jul 20.

引用本文的文献

2
Identifying Microbiota Signature and Functional Rules Associated With Bacterial Subtypes in Human Intestine.
Front Genet. 2019 Nov 15;10:1146. doi: 10.3389/fgene.2019.01146. eCollection 2019.
3
The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers.
J Mol Biol. 2018 Mar 2;430(5):611-627. doi: 10.1016/j.jmb.2017.11.016. Epub 2017 Dec 16.
5
The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System.
Structure. 2017 Jun 6;25(6):834-845.e5. doi: 10.1016/j.str.2017.04.005. Epub 2017 May 4.
7
Complete Genome Sequence of Thermus aquaticus Y51MC23.
PLoS One. 2015 Oct 14;10(10):e0138674. doi: 10.1371/journal.pone.0138674. eCollection 2015.
8
Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites.
Biomed Res Int. 2015;2015:141526. doi: 10.1155/2015/141526. Epub 2015 May 19.
9
Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient limitation.
EMBO J. 2014 Aug 18;33(16):1802-14. doi: 10.15252/embj.201387076. Epub 2014 Jul 1.
10
Ubiquitin-independent proteasomal degradation.
Biochim Biophys Acta. 2014 Jan;1843(1):216-21. doi: 10.1016/j.bbamcr.2013.05.008. Epub 2013 May 14.

本文引用的文献

1
Transcriptome analysis of Pseudomonas putida in response to nitrogen availability.
J Bacteriol. 2008 Jan;190(1):416-20. doi: 10.1128/JB.01230-07. Epub 2007 Oct 26.
2
Actinomycete-like proteasomes in a Gram-negative bacterium.
Trends Microbiol. 2007 Aug;15(8):335-8. doi: 10.1016/j.tim.2007.06.002. Epub 2007 Jun 22.
3
Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria.
Nature. 2007 Mar 29;446(7135):537-41. doi: 10.1038/nature05624. Epub 2007 Mar 7.
4
Proteasomes and their associated ATPases: a destructive combination.
J Struct Biol. 2006 Oct;156(1):72-83. doi: 10.1016/j.jsb.2006.04.012. Epub 2006 May 8.
5
The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB.
Arch Microbiol. 2006 Oct;186(4):273-86. doi: 10.1007/s00203-006-0138-0. Epub 2006 Jul 26.
7
Biomineralization of gold: biofilms on bacterioform gold.
Science. 2006 Jul 14;313(5784):233-6. doi: 10.1126/science.1125878.
8
Rooting the tree of life by transition analyses.
Biol Direct. 2006 Jul 11;1:19. doi: 10.1186/1745-6150-1-19.
9
Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis.
Antonie Van Leeuwenhoek. 2006 Jul;90(1):41-55. doi: 10.1007/s10482-006-9059-9. Epub 2006 May 6.
10
Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene.
J Biol Chem. 2006 Apr 28;281(17):11981-91. doi: 10.1074/jbc.M509848200. Epub 2006 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验