Scarpulla Richard C
Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA.
Physiol Rev. 2008 Apr;88(2):611-38. doi: 10.1152/physrev.00025.2007.
Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
线粒体拥有自身的遗传系统,并经历独特的细胞质遗传模式。每个细胞器都有多个共价闭合环状DNA基因组(mtDNA)的拷贝。mtDNA的全部蛋白质编码能力都用于合成呼吸装置内膜复合物的13个必需亚基。因此,大多数呼吸蛋白以及线粒体众多功能所需的所有其他基因产物都来自核基因。mtDNA的转录需要少量核编码蛋白,包括一种RNA聚合酶(POLRMT)、启动子识别所需的辅助因子(TFB1M、TFB2M)和激活因子(Tfam),以及一个终止因子(mTERF)。这个相对简单的系统可以解释mtDNA从不同启动子的双向转录以及控制rRNA/mRNA比例的关键终止事件。核线粒体相互作用取决于转录因子(NRF-1、NRF-2、PPARα、ERRα、Sp1等)与受调控共激活因子PGC-1家族成员(PGC-1α、PGC-1β和PRC)之间的相互作用。转录因子靶向特定于呼吸链、线粒体转录、翻译和复制机制以及蛋白质导入和组装装置等的基因。这些因子又直接或间接受PGC-1家族共激活因子的激活,其差异表达受一系列环境信号控制,包括温度、能量剥夺以及营养物质和生长因子的可用性。这些转录模式为理解线粒体生物发生和功能与决定细胞和组织特异性能量特性的信号事件的整合提供了一个基本框架。