Suppr超能文献

使用图分离器对基因表达数据进行聚类

Clustering gene expression data using graph separators.

作者信息

Kaba Bangaly, Pinet Nicolas, Lelandais Gaëlle, Sigayret Alain, Berry Anne

机构信息

LIMOS, UMR CNRS 6158, Ensemble des Cézeaux, 63173 Aubière cedex, France.

出版信息

In Silico Biol. 2007;7(4-5):433-52.

Abstract

Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

摘要

近期的研究工作利用图来对微阵列实验中的表达数据进行建模,目的是将基因划分为不同的簇。在本文中,我们引入了通过团分离器进行分解的方法。我们的目标是以两种方式改进经典的聚类方法:首先,我们希望允许簇之间存在重叠,因为这在生物学上似乎是合理的;其次,我们希望以图的结构为指导来定义簇的数量。我们使用一个著名的酵母数据库(酿酒酵母)对这种方法进行了测试。我们的结果很不错,因为我们找到的簇的表达谱非常一致。此外,我们能够将找到的簇组织成另一个图,并以一种尊重孢子形成过程所定义的时间顺序的方式对它们进行排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验