Suppr超能文献

蛋白激酶Mζ、长时程增强效应的维持与记忆存储的动态分子生物学

PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage.

作者信息

Sacktor Todd Charlton

机构信息

The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.

出版信息

Prog Brain Res. 2008;169:27-40. doi: 10.1016/S0079-6123(07)00002-7.

Abstract

How memories persist is a fundamental neurobiological question. The most commonly studied physiological model of memory is long-term potentiation (LTP). The molecular mechanisms of LTP can be divided into two phases: induction, triggering the potentiation; and maintenance, sustaining the potentiation over time. Although many molecules participate in induction, very few have been implicated in the mechanism of maintenance. Understanding maintenance, however, is critical for testing the hypothesis that LTP sustains memory storage in the brain. Only a single molecule has been found both necessary and sufficient for maintaining LTP--the brain-specific, atypical PKC isoform, protein kinase Mzeta (PKMzeta). Although full-length PKC isoforms respond to transient second messengers, and are involved in LTP induction, PKMzeta is a second messenger-independent kinase, consisting of the independent catalytic domain of PKCzeta, and is persistently active to sustain LTP maintenance. PKMzeta is produced by a unique PKMzeta mRNA, which is generated by an internal promoter within the PKCzeta gene and transported to the dendrites of neurons. LTP induction increases new PKMzeta synthesis, and the increased level of PKMzeta then enhances synaptic transmission by doubling the number of postsynaptic AMPA receptors (AMPAR) through GluR2 subunit-mediated trafficking of the receptors to the synapse. PKMzeta mediates synaptic potentiation specifically during the late-phase of LTP, as PKMzeta inhibitors can reverse established LTP when applied several hours after tetanization in hippocampal slices or 1 day after tetanization in vivo. These studies set the stage for testing the hypothesis that the mechanism of LTP maintenance sustains memory storage. PKMzeta inhibition in the hippocampus after learning eliminates the retention of spatial memory. Once the PKMzeta inhibitor has been eliminated, the memory is still erased, but new spatial memories can be learned and stored. Similar results are found for conditioned taste aversion when the inhibitor is injected in the insular neocortex. Thus PKMzeta is the first molecule found to be a component of the long-term memory trace.

摘要

记忆如何持续存在是一个基本的神经生物学问题。最常被研究的记忆生理模型是长时程增强(LTP)。LTP的分子机制可分为两个阶段:诱导,引发增强作用;维持,随着时间维持增强作用。尽管许多分子参与诱导阶段,但很少有分子与维持机制有关。然而,理解维持机制对于检验LTP在大脑中维持记忆存储这一假说至关重要。目前仅发现一种分子对维持LTP既必要又充分——即脑特异性、非典型的蛋白激酶C亚型,蛋白激酶Mζ(PKMzeta)。尽管全长蛋白激酶C亚型对瞬时第二信使有反应,并参与LTP诱导,但PKMzeta是一种不依赖第二信使的激酶,由PKCzeta的独立催化结构域组成,并且持续活跃以维持LTP的维持。PKMzeta由独特的PKMzeta mRNA产生,该mRNA由PKCzeta基因内的内部启动子产生并运输到神经元的树突。LTP诱导增加新的PKMzeta合成,然后增加的PKMzeta水平通过将突触后AMPA受体(AMPAR)的数量加倍来增强突触传递,这是通过GluR2亚基介导的受体向突触的转运实现的。PKMzeta在LTP的晚期特异性介导突触增强,因为在海马切片中强直刺激数小时后或在体内强直刺激1天后应用PKMzeta抑制剂可以逆转已建立的LTP。这些研究为检验LTP维持机制维持记忆存储这一假说奠定了基础。学习后海马体中的PKMzeta抑制会消除空间记忆的保留。一旦PKMzeta抑制剂被清除,记忆仍然会被消除,但可以学习和存储新的空间记忆。当抑制剂注射到岛叶新皮层时,对于条件性味觉厌恶也会发现类似的结果。因此,PKMzeta是第一个被发现为长期记忆痕迹组成部分的分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验