Suppr超能文献

利用陆地卫星TM和ETM+影像建立多尼亚纳湿地浊度和水深的预测模型。

Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

作者信息

Bustamante Javier, Pacios Fernando, Díaz-Delgado Ricardo, Aragonés David

机构信息

Laboratorio de Sig y Teledetección (LAST-EBD), Estación Biológica de Doñana, Consejo Superior de Investigaciones Cientificas, Avda. María Luisa s/n, Seville, Spain.

出版信息

J Environ Manage. 2009 May;90(7):2219-25. doi: 10.1016/j.jenvman.2007.08.021. Epub 2008 Apr 18.

Abstract

We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

摘要

我们利用陆地卫星5号专题制图仪(TM)和陆地卫星7号增强型专题制图仪(ETM+)的图像,结合多尼亚纳沼泽地采样点的同步地面实况数据,使用广义相加模型从波段反射率预测水体浊度和深度。我们有与7次陆地卫星5号和5次陆地卫星7号过境同步的12个不同日期的点样本。沼泽地水体浊度的最佳模型解释了地面实况数据中38%的方差,其预测因子包括3波段(630 - 690纳米)、5波段(1550 - 1750纳米)以及1波段(450 - 520纳米)与4波段(760 - 900纳米)的比值。对于像瓜达尔基维尔河和人工池塘这样较深且不受底部土壤反射率和水生植被影响的水体,预测水体浊度更容易。对于后者,一个使用3波段反射率的简单模型解释了78.6%的方差。水体深度比浊度更容易预测。沼泽地水体深度的最佳模型解释了78%的方差,其预测因子包括1波段、5波段、2波段(520 - 600纳米)与4波段的比值,以及9月沼泽干涸时4波段的底部土壤反射率。开发水体浊度和水体深度模型是为了利用陆地卫星图像时间序列重建多尼亚纳湿地在过去30年的历史变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验