Yunus Ali P, Dou Jie, Song Xuan, Avtar Ram
The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP), Chengdu University of Technology, Chengdu 610059, China.
Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1, Kami-Tomioka, Nagaoka, Niigata 940-2188, Japan.
Sensors (Basel). 2019 Jun 21;19(12):2788. doi: 10.3390/s19122788.
The bathymetry of nearshore coastal environments and lakes is constantly reworking because of the change in the patterns of energy dispersal and related sediment transport pathways. Therefore, updated and accurate bathymetric models are a crucial component in providing necessary information for scientific, managerial, and geographical studies. Recent advances in satellite technology revolutionized the acquisition of bathymetric profiles, offering new vistas in mapping. This contribution analyzed the suitability of Sentinel-2 and Landsat-8 images for bathymetric mapping of coastal and lake environments. The bathymetric algorithm was developed using an empirical approach and a random forest (RF) model based on the available high-resolution LiDAR bathymetric data for Mobile Bay, Tampa Bay, and Lake Huron regions obtained from the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC). Our results demonstrate that the satellite-derived bathymetry is efficient for retrieving depths up to 10 m for coastal regions and up to 30 m for the lake environment. While using the empirical approach, the root-mean-square error (RMSE) varied between 1.99 m and 4.74 m for the three regions. The RF model, on the other hand, provided an improved bathymetric model with RMSE between 1.13 m and 1.95 m. The comparative assessment suggests that Sentinel-2 has a slight edge over Landsat-8 images while employing the empirical approach. On the other hand, the RF model shows that Landsat-8 retrieves a better bathymetric model than Sentinel-2. Our work demonstrated that the freely available Sentinel-2 and Landsat-8 imageries proved to be reliable data for acquiring updated bathymetric information for large areas in a short period.
由于能量扩散模式和相关沉积物输送路径的变化,近岸沿海环境和湖泊的水深不断重塑。因此,更新且准确的水深模型是为科学、管理和地理研究提供必要信息的关键组成部分。卫星技术的最新进展彻底改变了水深剖面的获取方式,为测绘提供了新的视角。本论文分析了哨兵 -2 号和陆地卫星 -8 号图像在沿海和湖泊环境水深测绘中的适用性。利用经验方法和随机森林(RF)模型开发了水深算法,该模型基于从美国国家海洋和大气管理局(NOAA)国家地球物理数据中心(NGDC)获取的莫比尔湾、坦帕湾和休伦湖地区的高分辨率激光雷达水深数据。我们的结果表明,卫星衍生的水深测量对于沿海地区获取高达 10 米的深度以及湖泊环境获取高达 30 米的深度是有效的。在使用经验方法时,这三个地区的均方根误差(RMSE)在 1.99 米至 4.74 米之间变化。另一方面,RF 模型提供了一个改进的水深模型,RMSE 在 1.13 米至 1.95 米之间。比较评估表明,在采用经验方法时,哨兵 -2 号比陆地卫星 -8 号图像略有优势。另一方面,RF 模型表明陆地卫星 -8 号比哨兵 -2 号能获取更好的水深模型。我们的工作表明,免费提供的哨兵 -2 号和陆地卫星 -8 号图像被证明是在短时间内为大面积获取更新水深信息的可靠数据。