von Szentpály László
Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
J Am Chem Soc. 2008 May 7;130(18):5962-73. doi: 10.1021/ja710852w. Epub 2008 Apr 9.
In atom-based thermochemistry (ABT), state functions are referenced to free atoms, as opposed to the thermochemical convention of referencing to elements in their standard state. The shift of the reference frame reveals previously unrecognized linear relationships between the standard atomization enthalpies Delta(at)H(o)(g) of gas-phase diatomic and triatomic molecules and Delta(at)H(o)(s) of the corresponding solids for large groups of materials. For 35 alkali and coinage-metal halides, as well as alkali metal hydrides, Delta(at)H(o)(s) = 1.1203 Delta(at)H(o)(g) + 167.0 kJ mol(-1) is found; the standard error is SE = 16.0 kJ mol(-1), and the correlation coefficient is R = 0.9946. The solid coinage-metal monohydrides, CuH(s), AgH(s), and AuH(s), are predicted to be unstable with respect to the formation from the metals and elemental hydrogen by an approximately constant standard enthalpy of formation, Delta(f)H(o)(s) approximately +80 +/- 20 kJ mol(-1). Solid AuF is predicted to be marginally stable, having Delta(f)H(o)(s) = -60 +/- 50 kJ mol(-1) and standard a Gibbs energy of formation Delta(f)G(o)(s) approximately -40 +/- 50 kJ mol (-1). Triatomic alkaline-earth dihalides MX2 obey a similar linear relationship. The combined data of altogether 51 materials obey the relationship Delta(at)H(o)(s) = 1.2593 Delta(at)H(o)(g) + 119.9 kJ mol(-1) with R = 0.9984 and SE = 18.5 kJ mol(-1). The atomization enthalpies per atom of 25 data pairs of diatoms and solids in the groups 14-14, 13-15, and 2-16 are related as Delta(at)H(o)(s) = 2.1015 Delta(at)H(o)(g) + 231.9 kJ mol(-1) with R = 0.9949 and SE = 24.0 kJ mol(-1). Predictions are made for the GeC, GaSb, Hf2, TlN, BeS, MgSe, and MgTe molecules and for the solids SiPb, GePb, SnPb, and the thallium pnictides. Exceptions to the rule, such as SrO and BaO, are rationalized. Standard enthalpies of sublimation, Delta(subl)H(o) = Delta(at)H(o)(s) - Delta(at)H(o)(g), are calculated as a linear function of Delta(at)H(o)(g) profiting from the above linear relationships, and predictions for the Delta(subl)H(o) of the thallium pnictides are given. The validity of the new empirical relationships is limited to substances where at least one of the constituent elements is solid in its standard state. Reasons for the late discovery of such relationships are given, and a meaningful ABT is recommended by using Delta(at)H(o) as an important ordering and reference state function.
在基于原子的热化学(ABT)中,状态函数是以自由原子为参考,这与以元素的标准状态为参考的热化学惯例相反。参考系的转变揭示了对于大量材料而言,气相双原子和三原子分子的标准原子化焓ΔatHo(g)与相应固体的ΔatHo(s)之间以前未被认识到的线性关系。对于35种碱金属和碱土金属卤化物以及碱金属氢化物,发现ΔatHo(s)=1.1203ΔatHo(g)+167.0 kJ·mol-1;标准误差为SE = 16.0 kJ·mol-1,相关系数为R = 0.9946。固态碱土金属单氢化物CuH(s)、AgH(s)和AuH(s)预计相对于由金属和元素氢形成而言是不稳定的,其形成的标准焓近似为ΔfHo(s)≈ +80±20 kJ·mol-1。预测固态AuF略微稳定,其ΔfHo(s)= -60±50 kJ·mol-1,标准生成吉布斯自由能ΔfGo(s)≈ -40±50 kJ·mol-1。三原子碱土金属二卤化物MX₂遵循类似的线性关系。总共51种材料的综合数据遵循关系ΔatHo(s)=1.2593ΔatHo(g)+119.9 kJ·mol-1,R = 0.9984,SE = 18.5 kJ·mol-1。第14 - 14、13 - 15和2 - 16族中25对双原子和固体的数据对的每原子原子化焓的关系为ΔatHo(s)=2.1015ΔatHo(g)+231.9 kJ·mol-1,R = 0.9949,SE = 24.0 kJ·mol-1。对GeC、GaSb、Hf₂、TlN、BeS、MgSe和MgTe分子以及固体SiPb、GePb、SnPb和铊的磷化物进行了预测。对诸如SrO和BaO等该规则的例外情况进行了合理解释。升华标准焓ΔsublHo=ΔatHo(s)-ΔatHo(g),利用上述线性关系计算为ΔatHo(g)的线性函数,并给出了铊的磷化物的ΔsublHo的预测。新经验关系的有效性仅限于至少一种组成元素在其标准状态下为固体的物质。给出了此类关系发现较晚的原因,并建议通过使用ΔatHo作为重要的排序和参考状态函数来建立有意义的ABT。