Suppr超能文献

人类热休克蛋白90(Hsp90)ATP酶循环中的保守构象变化。

Conserved conformational changes in the ATPase cycle of human Hsp90.

作者信息

Richter Klaus, Soroka Joanna, Skalniak Lukasz, Leskovar Adriane, Hessling Martin, Reinstein Jochen, Buchner Johannes

机构信息

Center for Integrated Protein Science and Department of Chemistry, Technische Universität München, Garching, Germany.

出版信息

J Biol Chem. 2008 Jun 27;283(26):17757-65. doi: 10.1074/jbc.M800540200. Epub 2008 Apr 9.

Abstract

The dimeric molecular chaperone Hsp90 is required for the activation and stabilization of hundreds of substrate proteins, many of which participate in signal transduction pathways. The activation process depends on the hydrolysis of ATP by Hsp90. Hsp90 consists of a C-terminal dimerization domain, a middle domain, which may interact with substrate protein, and an N-terminal ATP-binding domain. A complex cycle of conformational changes has been proposed for the ATPase cycle of yeast Hsp90, where a critical step during the reaction requires the transient N-terminal dimerization of the two protomers. The ATPase cycle of human Hsp90 is less well understood, and significant differences have been proposed regarding key mechanistic aspects. ATP hydrolysis by human Hsp90alpha and Hsp90beta is 10-fold slower than that of yeast Hsp90. Despite these differences, our experiments suggest that the underlying enzymatic mechanisms are highly similar. In both cases, a concerted conformational rearrangement involving the N-terminal domains of both subunits is controlling the rate of ATP turnover, and N-terminal cross-talk determines the rate-limiting steps. Furthermore, similar to yeast Hsp90, the slow ATP hydrolysis by human Hsp90s can be stimulated up to over 100-fold by the addition of the co-chaperone Aha1 from either human or yeast origin. Together, our results show that the basic principles of the Hsp90 ATPase reaction are conserved between yeast and humans, including the dimerization of the N-terminal domains and its regulation by the repositioning of the ATP lid from its original position to a catalytically competent one.

摘要

二聚体分子伴侣Hsp90是数百种底物蛋白激活和稳定所必需的,其中许多底物蛋白参与信号转导途径。激活过程依赖于Hsp90对ATP的水解。Hsp90由一个C端二聚化结构域、一个可能与底物蛋白相互作用的中间结构域和一个N端ATP结合结构域组成。对于酵母Hsp90的ATP酶循环,已经提出了一个复杂的构象变化循环,其中反应过程中的一个关键步骤需要两个原体的瞬时N端二聚化。人类Hsp90的ATP酶循环了解较少,关于关键机制方面已经提出了显著差异。人类Hsp90α和Hsp90β的ATP水解速度比酵母Hsp90慢10倍。尽管存在这些差异,但我们的实验表明潜在的酶促机制高度相似。在这两种情况下,涉及两个亚基N端结构域的协同构象重排控制着ATP周转的速率,而N端的相互作用决定了限速步骤。此外,与酵母Hsp90类似,通过添加人源或酵母源的共伴侣Aha1,人类Hsp90的缓慢ATP水解可被刺激100倍以上。总之,我们的结果表明,Hsp90 ATP酶反应的基本原理在酵母和人类之间是保守的,包括N端结构域的二聚化及其通过将ATP盖子从其原始位置重新定位到催化活性位置的调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验