Mandadapu Kranthi K, Govindjee Sanjay, Mofrad Mohammad R K
Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
J Biomech. 2008;41(7):1467-78. doi: 10.1016/j.jbiomech.2008.02.014. Epub 2008 Apr 9.
The cytoskeleton is a complex structure within the cellular corpus that is responsible for the main structural properties and motilities of cells. A wide range of models have been utilized to understand cytoskeletal rheology and mechanics (see e.g. [Mofrad, M., Kamm, R., 2006. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge]). From this large collection of proposed models, the soft glassy rheological model (originally developed for inert soft glassy materials) has gained a certain traction in the literature due to the close resemblance of its predictions to certain mechanical data measured on cell cultures [Fabry, B., Maksym, G., Butler, J., Glogauer, M., Navajas, D., Fredberg, J., 2001. Scaling the microrheology of living cells. Physical Review Letters 87, 14102]. We first review classical linear rheological theory in a concise fashion followed by an examination of the soft glassy rheological theory. With this background we discuss the observed behavior of the cytoskeleton and the inherent limitations of classical rheological models for the cytoskeleton. This then leads into a discussion of the advantages and disadvantages presented to us by the soft glassy rheological model. We close with some comments of caution and recommendations on future avenues of exploration.
细胞骨架是细胞体内的一种复杂结构,负责细胞的主要结构特性和运动性。人们运用了各种各样的模型来理解细胞骨架的流变学和力学(例如,见[莫夫拉德,M.,卡姆,R.,2006年。《细胞骨架力学:模型与测量》。剑桥大学出版社,剑桥])。在众多提出的模型中,软玻璃流变模型(最初是为惰性软玻璃材料开发的)在文献中受到了一定关注,因为其预测结果与在细胞培养物上测量的某些力学数据极为相似[法布里,B.,马克西姆,G.,巴特勒,J.,格洛高尔,M.,纳瓦哈斯,D.,弗雷德伯格,J.,2001年。测量活细胞的微观流变学。《物理评论快报》87,14102]。我们首先简要回顾经典线性流变学理论,然后考察软玻璃流变学理论。在此背景下,我们讨论细胞骨架的观察行为以及经典细胞骨架流变模型的固有局限性。这进而引发对软玻璃流变模型所呈现的优缺点的讨论。最后,我们给出一些注意事项以及对未来探索途径的建议。