Suppr超能文献

Modeling and preliminary testing socket-residual limb interface stiffness of above-elbow prostheses.

作者信息

Sensinger Jonathon W, Weir Richard F ff

机构信息

Mahidol University, Bangkok, Thailand.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):184-90. doi: 10.1109/TNSRE.2008.918388.

Abstract

The interface between the socket and residual limb can have a significant effect on the performance of a prosthesis. Specifically, knowledge of the rotational stiffness of the socket-residual limb (S-RL) interface is extremely useful in designing new prostheses and evaluating new control paradigms, as well as in comparing existing and new socket technologies. No previous studies, however, have examined the rotational stiffness of S-RL interfaces. To address this problem, a math model is compared to a more complex finite element analysis, to see if the math model sufficiently captures the main effects of S-RL interface rotational stiffness. Both of these models are then compared to preliminary empirical testing, in which a series of X-rays, called fluoroscopy, is taken to obtain the movement of the bone relative to the socket. Force data are simultaneously recorded, and the combination of force and movement data are used to calculate the empirical rotational stiffness of elbow S-RL interface. The empirical rotational stiffness values are then compared to the models, to see if values of Young's modulus obtained in other studies at localized points may be used to determine the global rotational stiffness of the S-RL interface. Findings include agreement between the models and empirical results and the ability of persons to significantly modulate the rotational stiffness of their S-RL interface a little less than one order of magnitude. The floor and ceiling of this range depend significantly on socket length and co-contraction levels, but not on residual limb diameter or bone diameter. Measured trans-humeral S-RL interface rotational stiffness values ranged from 24-140 Nm/rad for the four subjects tested in this study.

摘要

相似文献

1
Modeling and preliminary testing socket-residual limb interface stiffness of above-elbow prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):184-90. doi: 10.1109/TNSRE.2008.918388.
3
A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin temperatures.
IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):336-43. doi: 10.1109/TNSRE.2006.881532.
5
Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
Med Eng Phys. 2004 Oct;26(8):655-62. doi: 10.1016/j.medengphy.2004.04.010.
6
Interface load analysis for computer-aided design of below-knee prosthetic sockets.
Med Biol Eng Comput. 1992 Jul;30(4):419-26. doi: 10.1007/BF02446180.
8
Using computational simulation to aid in the prediction of socket fit: a preliminary study.
Med Eng Phys. 2007 Oct;29(8):923-9. doi: 10.1016/j.medengphy.2006.09.008. Epub 2006 Oct 23.
10
Press-Fit Bone-Anchored Prosthesis for Individuals with Transtibial Amputation.
JBJS Essent Surg Tech. 2024 May 22;14(2). doi: 10.2106/JBJS.ST.23.00006. eCollection 2024 Apr-Jun.

引用本文的文献

1
Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee.
Plast Reconstr Surg Glob Open. 2018 Jan 12;6(1):e1632. doi: 10.1097/GOX.0000000000001632. eCollection 2018 Jan.
2
Modeling of prosthetic limb rotation control by sensing rotation of residual arm bone.
IEEE Trans Biomed Eng. 2008 Sep;55(9):2134-42. doi: 10.1109/TBME.2008.923914.

本文引用的文献

1
Sonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis.
Med Eng Phys. 2006 Jun;28(5):405-15. doi: 10.1016/j.medengphy.2005.07.012. Epub 2005 Aug 22.
5
In vivo indentation of lower extremity limb soft tissues.
IEEE Trans Rehabil Eng. 1999 Sep;7(3):268-77. doi: 10.1109/86.788464.
6
Effective elastic properties for lower limb soft tissues from manual indentation experiment.
IEEE Trans Rehabil Eng. 1999 Sep;7(3):257-67. doi: 10.1109/86.788463.
7
A biomimetic controller for a multifinger prosthesis.
IEEE Trans Rehabil Eng. 1999 Jun;7(2):121-9. doi: 10.1109/86.769401.
8
Quantitative assessment of four men using above-elbow prosthetic control.
Arch Phys Med Rehabil. 1993 Jul;74(7):720-9. doi: 10.1016/0003-9993(93)90033-7.
9
Biomechanical assessment of below-knee residual limb tissue.
J Rehabil Res Dev. 1994 Aug;31(3):188-98.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验