Pouille Philippe-Alexandre, Farge Emmanuel
Institut Curie, Centre de Recherche, Paris, F-75248 France.
Phys Biol. 2008 Apr 10;5(1):015005. doi: 10.1088/1478-3975/5/1/015005.
The mechanical aspects of embryonic morphogenesis have been widely analysed by numerical simulations of invagination in sea urchins and Drosophila gastrulation. Finite element models, which describe the tissue as a continuous medium, lead to the global invagination morphogenesis observed in vivo. Here we develop a simulation of multicellular embryo invagination that allows access to both cellular and multicellular mechanical behaviours of the embryo. In this model, the tissue is composed of adhesive individual cells, in which shape change dynamics is governed by internal acto-myosin forces and the hydrodynamic flow associated with membrane movements. We investigated the minimal structural and force elements sufficient to phenocopy mesoderm invagination. The minimal structures are cell membranes characterized by an acto-myosin cortical tension and connected by apical and basal junctions and an acto-myosin contractile ring connected to the apical junctions. An increase in the apical-cortical surface tension is the only control parameter change required to phenocopy most known multicellular and cellular shape changes of Drosophila gastrulation. Specifically, behaviours observed in vivo, including apical junction movements at the onset of gastrulation, cell elongation and subsequent shortening during invagination, and the development of a dorso-ventral gradient of thickness of the embryo, are predicted by this model as passive mechanical consequences of the genetically controlled increase in the apical surface tension in invaginating mesoderm cells, thus demonstrating the accurate description of structures at both global and single cell scales.
胚胎形态发生的力学方面已通过对海胆内陷和果蝇原肠胚形成的数值模拟进行了广泛分析。有限元模型将组织描述为连续介质,可导致在体内观察到的整体内陷形态发生。在此,我们开发了一种多细胞胚胎内陷模拟,能够研究胚胎的细胞和多细胞力学行为。在该模型中,组织由具有黏附性的单个细胞组成,细胞形状变化动力学受内部肌动蛋白 - 肌球蛋白力以及与膜运动相关的流体动力流控制。我们研究了足以模拟中胚层内陷的最小结构和力元件。最小结构包括以肌动蛋白 - 肌球蛋白皮质张力为特征、通过顶端和基部连接相连的细胞膜,以及连接到顶端连接的肌动蛋白 - 肌球蛋白收缩环。顶端皮质表面张力的增加是模拟果蝇原肠胚形成中大多数已知多细胞和细胞形状变化所需的唯一控制参数变化。具体而言,该模型预测了在体内观察到的行为,包括原肠胚形成开始时的顶端连接运动、内陷过程中细胞的伸长和随后的缩短,以及胚胎背腹厚度梯度的形成,这些都是中胚层内陷细胞中由基因控制的顶端表面张力增加所导致的被动力学结果,从而证明了该模型在整体和单细胞尺度上对结构的准确描述。