Suppr超能文献

动力蛋白臂和β-微管蛋白单体的相对空间频率的局部调整是否参与了“9+2”轴丝的调节?

Are the local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the "9+2" axoneme?

作者信息

Cibert Christian

机构信息

Groupe de "Morphométrie et de Modélisation Cellulaire", Institut Jacques Monod, CNRS, Universités Paris 6, Paris 7, Tour 43, 2 place Jussieu, F-75251 Paris Cedex 05, France.

出版信息

J Theor Biol. 2008 Jul 7;253(1):74-89. doi: 10.1016/j.jtbi.2008.01.029. Epub 2008 Feb 8.

Abstract

The "9+2" axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A "geometric clutch" hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].

摘要

“9+2”轴丝是一种高度特异的柱状结构,其周期性弯曲源于9个外侧微管双联体的累积剪切力。由于微管蛋白单体的离散结构以及外侧双联体所携带的活性附属结构(动力蛋白臂、连接蛋白和辐条),这种运动对应于这些拓扑微调结构的相对剪切,其特性取决于波列的几何形状。当轴丝节段弯曲时,这会诱导微管蛋白单体出现压缩和扩张构象,进而导致外侧双联体所携带附属结构的空间频率发生改变。从动力学角度来看,两个相互作用的相对微调结构元件的空间频率调整,会根据双联体对在轴丝圆柱体周围的位置及其在轴丝圆柱体内的空间取向,产生不同的纵向周期性分子相互作用联合概率分布模式。在剪切过程中,这些模式沿着外侧双联体间隔移动,速度范围从滑动速度的1倍到1000倍以上,沿由弯曲平面分隔的轴丝的两个相对半部分以两个相反方向移动,遵循轴丝内动力蛋白臂的极性。因此,这些波可能参与调节沿鞭毛的动力蛋白臂的交替活动,因为它们会诱导沿轴丝进行必要的分子间对话,因为它们可能是轴丝局部动态稳定性/不稳定性平衡的一个要素。这补充了几何离合器模型[林德曼,C.,1994年。一种“几何离合器”假说,用于解释纤毛和鞭毛轴丝的振荡。《理论生物学杂志》168,175 - 189]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验