Suppr超能文献

Functional microbial diversity of the railway track bed.

作者信息

Cederlund Harald, Thierfelder Tomas, Stenström John

机构信息

Department of Microbiology, Swedish University of Agricultural Sciences (SLU), Box 7025, SE-75007 Uppsala, Sweden.

出版信息

Sci Total Environ. 2008 Jul 1;397(1-3):205-14. doi: 10.1016/j.scitotenv.2008.02.041. Epub 2008 Apr 11.

Abstract

Railways constitute relatively unexplored microbial habitats. Little is known about the amounts, activities or distributions of microorganisms and their associated heterotrophic capabilities on railway embankments. The aim of this study was to investigate the microbiology of two Swedish railway tracks in order to fill some of the gaps in the available information. We estimated microbial biomass by means of substrate-induced respiration, microbial activity as basal respiration (BR) and as a kinetically derived parameter (r) hypothesised to correspond to the active fraction of the microbial biomass. It was confirmed that the microbial biomass and activity were low as compared with agricultural soils and that their distributions were distinctly positively skewed. Spatial Kriging revealed that covariance structures were sustained on a scale smaller than the employed sampling grid (<1 m). Substrate richness (SR), as measured with Biolog ECO plates, was used as a quantitative measure of functional diversity. SR correlated to microbial activity and SIR, indicating that functional traits were lacking where the microbial biomass was low or less active. The dependence of microbial activities on basic soil characteristics were inferred by separately designed general linear models. Water content was found to be the most important factor moderating basal respiration and functional diversity, whereas the organic matter content was identified as the most important covariate for SIR. Multivariate analysis of the carbon source utilisation patterns of the Biolog plates with equivalent average well-colour development revealed homogenous substrate utilisation among samples. This indicates that the microbial functional potential is randomly distributed in the railway track bed. In combination, our findings imply that the ecosystem functionality of railway embankments may be seriously hampered as compared with agricultural soils. This has consequences for the risk assessment of herbicides applied to railways.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验