Suppr超能文献

线性混合效应模型中常数均值的无分布检验。

A distribution-free test of constant mean in linear mixed effects models.

作者信息

Lim Johan, Wang Xinlei, Lee Seokho, Jung Sin-Ho

机构信息

Department of Statistics, Seoul National University, Seoul, Korea.

出版信息

Stat Med. 2008 Aug 30;27(19):3833-46. doi: 10.1002/sim.3275.

Abstract

We propose a distribution-free procedure, an analogy of the DIP test in non-parametric regression, to test whether the means of responses are constant over time in repeated measures data. Unlike the existing tests, the proposed procedure requires very minimal assumptions to the distributions of both random effects and errors. We study the asymptotic reference distribution of the test statistic analytically and propose a permutation procedure to approximate the finite-sample reference distribution. The size and power of the proposed test are illustrated and compared with competitors through several simulation studies. We find that it performs well for data of small sizes, regardless of model specification. Finally, we apply our test to a data example to compare the effect of fatigue in two different methods used for cardiopulmonary resuscitation.

摘要

我们提出了一种无分布程序,它类似于非参数回归中的DIP检验,用于检验重复测量数据中响应均值是否随时间保持恒定。与现有检验不同,所提出的程序对随机效应和误差的分布所需假设极少。我们通过解析研究了检验统计量的渐近参考分布,并提出了一种置换程序来近似有限样本参考分布。通过几个模拟研究说明了所提出检验的大小和功效,并与其他竞争者进行了比较。我们发现,无论模型规格如何,它在小样本数据上表现良好。最后,我们将我们的检验应用于一个数据实例,以比较两种不同心肺复苏方法中疲劳的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验