Yu Alfred C H, Cobbold Richard S C
University of Hong Kong, Department of Electrical and Electronic Engineering, Pokfulam, Hong Kong.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Mar;55(3):559-72. doi: 10.1109/TUFFC.2008.682.
Because of their adaptability to the slow-time signal contents, eigen-based filters have shown potential in improving the flow detection performance of color flow images. This paper proposes a new eigen-based filter called the Hankel-SVD filter that is intended to process each slowtime ensemble individually. The new filter is derived using the notion of principal Hankel component analysis, and it achieves clutter suppression by retaining only the principal components whose order is greater than the clutter eigen-space dimension estimated from a frequency based analysis algorithm. To assess its efficacy, the Hankel-SVD filter was first applied to synthetic slow-time data (ensemble size: 10) simulated from two different sets of flow parameters that model: 1) arterial imaging (blood velocity: 0 to 38.5 cm/s, tissue motion: up to 2 mm/s, transmit frequency: 5 MHz, pulse repetition period: 0.4 ms) and 2) deep vessel imaging (blood velocity: 0 to 19.2 cm/s, tissue motion: up to 2 cm/s, transmit frequency: 2 MHz, pulse repetition period: 2.0 ms). In the simulation analysis, the post-filter clutter-to- blood signal ratio (CBR) was computed as a function of blood velocity. Results show that for the same effective stopband size (50 Hz), the Hankel-SVD filter has a narrower transition region in the post-filter CBR curve than that of another type of adaptive filter called the clutter-downmixing filter. The practical efficacy of the proposed filter was tested by application to in vivo color flow data obtained from the human carotid arteries (transmit frequency: 4 MHz, pulse repetition period: 0.333 ms, ensemble size: 10). The resulting power images show that the Hankel-SVD filter can better distinguish between blood and moving-tissue regions (about 9 dB separation in power) than the clutter-downmixing filter and a fixed-rank multi ensemble-based eigen-filter (which showed a 2 to 3 dB separation).
由于基于特征值的滤波器能够适应慢时间信号内容,因此在提高彩色血流图像的血流检测性能方面显示出了潜力。本文提出了一种新的基于特征值的滤波器,称为汉克尔奇异值分解(Hankel-SVD)滤波器,旨在对每个慢时间样本进行单独处理。该新滤波器是利用主汉克尔成分分析的概念推导出来的,它通过仅保留阶数大于基于频率分析算法估计的杂波特征空间维度的主成分来实现杂波抑制。为了评估其有效性,首先将汉克尔奇异值分解滤波器应用于从两组不同血流参数模拟得到的合成慢时间数据(样本大小:10),这两组参数分别模拟:1)动脉成像(血流速度:0至38.5厘米/秒,组织运动:高达2毫米/秒,发射频率:5兆赫,脉冲重复周期:0.4毫秒)和2)深部血管成像(血流速度:0至19.2厘米/秒,组织运动:高达2厘米/秒,发射频率:2兆赫,脉冲重复周期:2.0毫秒)。在模拟分析中,计算滤波后杂波与血液信号比(CBR)作为血流速度的函数。结果表明,对于相同的有效阻带大小(50赫兹),汉克尔奇异值分解滤波器在滤波后CBR曲线中的过渡区域比另一种称为杂波下混滤波器的自适应滤波器更窄。通过将该滤波器应用于从人体颈动脉获得的体内彩色血流数据(发射频率:4兆赫,脉冲重复周期:0.333毫秒,样本大小:10)来测试所提出滤波器的实际有效性。所得的功率图像表明,汉克尔奇异值分解滤波器比杂波下混滤波器和基于固定秩多样本的特征值滤波器(其显示出2至3分贝的分离)能更好地区分血液和运动组织区域(功率上约9分贝的分离)。