Suppr超能文献

一种用于互斥二元结局的Meta分析方法。

A method for the meta-analysis of mutually exclusive binary outcomes.

作者信息

Trikalinos Thomas A, Olkin Ingram

机构信息

Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Box #63, Boston, MA 02111, USA.

出版信息

Stat Med. 2008 Sep 20;27(21):4279-300. doi: 10.1002/sim.3299.

Abstract

Meta-analyses of multiple outcomes need to take into account the within-study correlation across the different outcomes. Here we focus on the meta-analysis of dichotomous outcomes that are mutually exclusive and exhaustive. Correlations between effect sizes for mutually exclusive outcomes are negative and can be obtained from data already available. We present both fixed-effects and random-effects methods that account for the negative correlations and yield correct simultaneous confidence intervals for both the marginal outcome-specific effect sizes and the relative effect sizes between outcomes. Formulae for the odds ratio, risk ratio, risk difference, and the differences in the arcsin-transformed risks are provided. An example of a meta-analysis of randomized trials of radiotherapy and mastectomy with axillary lymph node clearance versus only mastectomy with axillary clearance for early breast cancer is presented. The mutually exclusive outcomes of breast cancer deaths and deaths secondary to other causes are examined in separate meta-analyses, and also by taking the between-outcome correlation into account. We argue that mutually exclusive outcomes in the meta-analyses of binary data are optimally analyzed in a multinomial setting. This may also be applicable when a meta-analysis examines only one out of several mutually exclusive outcomes. For large sample sizes and/or low event counts, the covariances between outcome-specific effect sizes are small, and either ignoring them or accounting for them would result in similar estimates for any practical purpose. However, meta-analysts should explore the robustness of the findings from individual meta-analyses when mutually exclusive outcomes are assessed.

摘要

对多个结果进行的荟萃分析需要考虑不同结果之间的研究内相关性。在此,我们聚焦于对相互排斥且详尽无遗的二分结果进行的荟萃分析。相互排斥结果的效应大小之间的相关性为负,且可从已有数据中获得。我们提出了固定效应和随机效应方法,这些方法考虑了负相关性,并为边际结果特异性效应大小和结果之间的相对效应大小生成正确的同时置信区间。提供了比值比、风险比、风险差以及反正弦转换风险差异的公式。给出了一个针对早期乳腺癌放疗与乳房切除术加腋窝淋巴结清扫术对比仅乳房切除术加腋窝清扫术的随机试验荟萃分析的示例。在单独的荟萃分析中,并通过考虑结果间的相关性,对乳腺癌死亡和其他原因导致的死亡这两个相互排斥的结果进行了研究。我们认为,在多项分布设定中对二元数据荟萃分析中的相互排斥结果进行最优分析。当荟萃分析仅检查几个相互排斥结果中的一个时,这一点可能也适用。对于大样本量和/或低事件数,结果特异性效应大小之间的协方差较小,忽略或考虑它们对于任何实际目的都会导致类似的估计。然而,当评估相互排斥结果时,荟萃分析者应探究单个荟萃分析结果的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验