Warn D E, Thompson S G, Spiegelhalter D J
MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge, CB2 2SR, UK.
Stat Med. 2002 Jun 15;21(11):1601-23. doi: 10.1002/sim.1189.
When conducting a meta-analysis of clinical trials with binary outcomes, a normal approximation for the summary treatment effect measure in each trial is inappropriate in the common situation where some of the trials in the meta-analysis are small, or the observed risks are close to 0 or 1. This problem can be avoided by making direct use of the binomial distribution within trials. A fully Bayesian method has already been developed for random effects meta-analysis on the log-odds scale using the BUGS implementation of Gibbs sampling. In this paper we demonstrate how this method can be extended to perform analyses on both the absolute and relative risk scales. Within each approach we exemplify how trial-level covariates, including underlying risk, can be considered. Data from 46 trials of the effect of single-dose ibuprofen on post-operative pain are analysed and the results contrasted with those derived from classical and Bayesian summary statistic methods. The clinical interpretation of the odds ratio scale is not straightforward. The advantages and flexibility of a fully Bayesian approach to meta-analysis of binary outcome data, considered on an absolute risk or relative risk scale, are now available.
在对具有二元结局的临床试验进行荟萃分析时,在荟萃分析中的一些试验规模较小,或者观察到的风险接近0或1这种常见情况下,对每个试验中的汇总治疗效果测量采用正态近似是不合适的。通过直接利用试验中的二项分布可以避免这个问题。已经开发了一种完全贝叶斯方法,用于在对数优势比尺度上使用吉布斯采样的BUGS实现进行随机效应荟萃分析。在本文中,我们展示了如何扩展该方法以在绝对风险和相对风险尺度上进行分析。在每种方法中,我们举例说明了如何考虑试验水平协变量,包括潜在风险。分析了46项关于单剂量布洛芬对术后疼痛影响的试验数据,并将结果与经典和贝叶斯汇总统计方法得出的结果进行对比。优势比尺度的临床解释并不直接。现在可以采用完全贝叶斯方法在绝对风险或相对风险尺度上对二元结局数据进行荟萃分析,其优势和灵活性尽显。
Stat Med. 2001-8-15
Stat Med. 1996-12-30
Stat Med. 2001-8-15
Stat Med. 2008-9-20
Theor Popul Biol. 2025-8