Wunderlich Carsten, Schober Kristin, Schmeisser Alexander, Heerwagen Christian, Tausche Anne-Kathrin, Steinbronn Nadine, Brandt Aljoscha, Kasper Michael, Schwencke Carsten, Braun-Dullaeus Ruediger C, Strasser Ruth H
University of Technology Dresden, Department of Medicine and Cardiology, Medical Clinic, Fetscherstr. 76, Dresden 01307, Germany.
J Mol Cell Cardiol. 2008 May;44(5):938-47. doi: 10.1016/j.yjmcc.2008.02.275. Epub 2008 Mar 8.
Recently generated caveolin-1 deficient mice (cav-1(-/-)) display several physiological alterations such as severe heart failure and lung fibrosis. The molecular mechanisms how the loss of caveolin-1 (cav-1) mediates these alterations are currently under debate. A plethora of studies support a role of cav-1 as a negative regulator of endothelial nitric oxide synthase (eNOS). Accordingly, constitutive eNOS hyperactivation was observed in cav-1(-/-). Given the hyperactivated eNOS enzyme we hypothesized that disturbed eNOS function is involved in the development of the cardiopulmonary pathologies in cav-1(-/-). The present study argues that loss of cav-1 results in enhanced eNOS activity but not in increased vascular tetrahydrobiopterin (BH(4)) levels (which acts as an essential eNOS cofactor) thereby causing a stoichiometric discordance between eNOS activity and BH(4) sufficient to cause dysfunctional eNOS signaling. The resultant oxidative stress is largely responsible for major cardiac and pulmonary defects observed in cav-1(-/-). BH(4) donation to cav-1(-/-) led to a normalized BH(4)/BH(2) ratio, to reduced oxidant stress, to substantial improvements of both systolic and diastolic heart function and to marked amelioration of the impaired lung phenotype. Notably, the antioxidant tetrahydroneopterin which is not essential for eNOS function showed no relevant effect. Taken together these novel findings indicate that dysfunctional eNOS is of central importance in the genesis of the cardiopulmonary phenotype of cav-1(-/-). Additionally, these findings are generally of paramount importance since they underline the deleterious role of an uncoupled eNOS in cardiovascular pathology and they additionally suggest BH(4) as an effective cure.
最近培育出的小窝蛋白-1缺陷小鼠(cav-1(-/-))表现出多种生理改变,如严重的心力衰竭和肺纤维化。小窝蛋白-1(cav-1)缺失介导这些改变的分子机制目前仍存在争议。大量研究支持cav-1作为内皮型一氧化氮合酶(eNOS)负调节因子的作用。因此,在cav-1(-/-)小鼠中观察到组成型eNOS过度激活。鉴于eNOS酶过度激活,我们推测eNOS功能紊乱参与了cav-1(-/-)小鼠心肺病理的发展。本研究表明,cav-1缺失导致eNOS活性增强,但血管四氢生物蝶呤(BH(4))水平(作为eNOS的必需辅因子)并未升高,从而导致eNOS活性与BH(4)之间的化学计量不一致,足以引起功能失调的eNOS信号传导。由此产生的氧化应激在很大程度上导致了cav-1(-/-)小鼠出现的主要心脏和肺部缺陷。向cav-1(-/-)小鼠提供BH(4)可使BH(4)/BH(2)比值正常化,降低氧化应激,显著改善收缩和舒张期心脏功能,并明显改善受损的肺表型。值得注意的是,对eNOS功能并非必需的抗氧化剂四氢新蝶呤没有相关作用。综上所述,这些新发现表明功能失调的eNOS在cav-1(-/-)小鼠心肺表型的发生中至关重要。此外,这些发现总体上具有至关重要的意义,因为它们强调了未偶联的eNOS在心血管病理中的有害作用,并且还表明BH(4)是一种有效的治疗方法。