Suppr超能文献

Effects of homocysteine on metabolic pathways in cultured astrocytes.

作者信息

Jin Ying, Brennan Lorraine

机构信息

UCD School of Agriculture, Food Science and Veterinary Medicine, UCD Conway Institute, UCD Dublin, Belfield, Dublin 4, Ireland.

出版信息

Neurochem Int. 2008 Jun;52(8):1410-5. doi: 10.1016/j.neuint.2008.03.001. Epub 2008 Mar 13.

Abstract

Homocysteine is an amino acid that is an important risk factor for several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Increased homocysteine levels induce neuronal cell death in a variety of neuronal types. However, very few studies have probed the effects of homocysteine in astrocytes. The present study investigated the effects of homocysteine on primary cultures of astrocytes by exposing astrocytes to 400 microM homocysteine for 20 h. Metabolic extracts of cells were prepared following a 4-h incubation in minimum medium with 5.5 mM [U-(13)C]glucose in the presence or absence of homocysteine and analysed using (13)C NMR. The expression level of pyruvate dehydrogenase kinase isoform 2 (PDK-2), NAD(P)H levels and mitochondrial membrane potential responses were investigated following culture with homocysteine. Metabolomic analysis was performed using (1)H NMR spectroscopy and pattern recognition analysis. Following incubation with homocysteine there was a significant decrease (48%) in the ratio of flux through pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) which was due to an increased flux through PDH. In addition, homocysteine culture resulted in a significant reduction in PDK-2 protein expression. Following stimulation with glucose there was a significant increase in NAD(P)H levels and an impaired hyperpolarisation of the mitochondrial membrane in homocysteine-treated cells. Metabolomic analysis showed that the most discriminating metabolites following homocysteine treatment were choline and hypotaurine. In summary, the results demonstrated that sub-lethal concentrations of homocysteine caused significant metabolic changes and altered mitochondrial function in primary cultures of astrocytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验