Vanselow K, Kramer A
Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany.
Cold Spring Harb Symp Quant Biol. 2007;72:167-76. doi: 10.1101/sqb.2007.72.036.
Circadian clocks regulate a wide variety of processes ranging from gene expression to behavior. At the molecular level, circadian rhythms are thought to be produced by a set of clock genes and proteins interconnected to form transcriptional-translational feedback loops. Rhythmic gene expression was formerly regarded as the major drive for rhythms in clock protein abundance, but recent findings underline the crucial importance of posttranslational mechanisms for both the generation and dynamics of circadian rhythms. In particular, the reversible phosphorylation of PER proteins-essential components within the negative feedback loop in Drosophila and mammals-seems to have a key role for the correct timing of nuclear repression. To understand how PER protein phosphorylation regulates the dynamics of the circadian oscillator, we have mapped endogenous phosphorylation sites in mPER2. Detailed investigation of the functional role of one particular phosphorylation site (Ser-659, which is mutated in the familial advanced sleep phase syndrome [FASPS]) led us propose a model of functionally different phosphorylation sites in PER2. This concept explains not only the FASPS phenotype, but also the effect of the tau mutation in hamster.
昼夜节律时钟调节从基因表达到行为等各种各样的过程。在分子水平上,昼夜节律被认为是由一组相互连接形成转录-翻译反馈环的时钟基因和蛋白质产生的。节律性基因表达以前被视为时钟蛋白丰度节律的主要驱动力,但最近的研究结果强调了翻译后机制在昼夜节律产生和动态变化中的至关重要性。特别是,果蝇和哺乳动物中负反馈环内的重要组成部分PER蛋白的可逆磷酸化,似乎对核抑制的正确时间安排起着关键作用。为了理解PER蛋白磷酸化如何调节昼夜节律振荡器的动态变化,我们绘制了mPER2中的内源性磷酸化位点。对一个特定磷酸化位点(Ser-659,在家族性早睡综合征[FASPS]中发生突变)功能作用的详细研究,使我们提出了一个关于PER2中功能不同磷酸化位点的模型。这一概念不仅解释了FASPS表型,还解释了仓鼠中tau突变的影响。