Suppr超能文献

运用多元统计技术评估污染湖泊的水质:一项案例研究。

Assessment of water quality of polluted lake using multivariate statistical techniques: a case study.

作者信息

Kazi T G, Arain M B, Jamali M K, Jalbani N, Afridi H I, Sarfraz R A, Baig J A, Shah Abdul Q

机构信息

Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.

出版信息

Ecotoxicol Environ Saf. 2009 Feb;72(2):301-9. doi: 10.1016/j.ecoenv.2008.02.024. Epub 2008 Apr 18.

Abstract

Multivariate statistical techniques, cluster analysis (CA) and principal component analysis (PCA) were applied to the data on water quality of Manchar Lake (Pakistan), generated during 2005-06, with monitoring at five different sites for 36 parameters. This study evaluated and interpreted complex water quality data sets and apportioned of pollution sources to get better information about water quality and to design a monitoring network. The chemical correlations were observed by PCA, which were used to classify the samples by CA, based on the PCA scores. Three significant sampling locations--(sites 1 and 2), (site 4) and (sites 3 and 5)--were detected on the basis of similarity of their water quality. The results revealed that the major causes of water quality deterioration were related to inflow of effluent from industrial, domestic, agricultural and saline seeps into the lake at site 1 and also resulting from people living in boats and fishing at sites 2 and 3.

摘要

多元统计技术,即聚类分析(CA)和主成分分析(PCA),被应用于2005 - 2006年期间生成的巴基斯坦曼查尔湖水质数据,该数据来自五个不同地点对36个参数的监测。本研究评估和解释了复杂的水质数据集,并对污染源进行了 apportioned,以获取有关水质的更好信息并设计监测网络。通过主成分分析观察到化学相关性,基于主成分分析得分,这些相关性被用于通过聚类分析对样本进行分类。根据水质相似性,检测到三个重要的采样地点——(地点1和2)、(地点4)以及(地点3和5)。结果表明,水质恶化的主要原因与工业、生活、农业废水以及盐水渗漏在地点1流入湖泊有关,也与在地点2和3生活在船上及捕鱼的人有关。 (注:apportioned此处原文有误,根据语境推测可能是“解析”之类的意思,按正确理解翻译后整体意思更通顺)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验