Suppr超能文献

HingeMaster:正常模式铰链预测方法及互补预测器的整合。

HingeMaster: normal mode hinge prediction approach and integration of complementary predictors.

作者信息

Flores Samuel C, Keating Kevin S, Painter Jay, Morcos Faruck, Nguyen Khang, Merritt Ethan A, Kuhn Leslie A, Gerstein Mark B

机构信息

Department of Physics, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Proteins. 2008 Nov 1;73(2):299-319. doi: 10.1002/prot.22060.

Abstract

Protein motion is often the link between structure and function and a substantial fraction of proteins move through a domain hinge bending mechanism. Predicting the location of the hinge from a single structure is thus a logical first step towards predicting motion. Here, we describe ways to predict the hinge location by grouping residues with correlated normal-mode motions. We benchmarked our normal-mode based predictor against a gold standard set of carefully annotated hinge locations taken from the Database of Macromolecular Motions. We then compared it with three existing structure-based hinge predictors (TLSMD, StoneHinge, and FlexOracle), plus HingeSeq, a sequence-based hinge predictor. Each of these methods predicts hinges using very different sources of information-normal modes, experimental thermal factors, bond constraint networks, energetics, and sequence, respectively. Thus it is logical that using these algorithms together would improve predictions. We integrated all the methods into a combined predictor using a weighted voting scheme. Finally, we encapsulated all our results in a web tool which can be used to run all the predictors on submitted proteins and visualize the results.

摘要

蛋白质运动通常是结构与功能之间的联系,并且相当一部分蛋白质通过结构域铰链弯曲机制进行移动。因此,从单一结构预测铰链的位置是预测运动的合理第一步。在这里,我们描述了通过对具有相关正常模式运动的残基进行分组来预测铰链位置的方法。我们将基于正常模式的预测器与从大分子运动数据库中获取的一组经过精心注释的铰链位置的黄金标准进行了基准测试。然后,我们将其与三种现有的基于结构的铰链预测器(TLSMD、StoneHinge和FlexOracle)以及基于序列的铰链预测器HingeSeq进行了比较。这些方法中的每一种都分别使用非常不同的信息来源——正常模式、实验热因子、键约束网络、能量学和序列——来预测铰链。因此,将这些算法结合使用会提高预测效果是合乎逻辑的。我们使用加权投票方案将所有方法集成到一个组合预测器中。最后,我们将所有结果封装在一个网络工具中,该工具可用于对提交的蛋白质运行所有预测器并可视化结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验