Suppr超能文献

不同尺寸金纳米颗粒周围水分子的吸附机制。

Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes.

作者信息

Chang Chun-I, Lee Wen-Jay, Young Tai-Fa, Ju Shin-Pon, Chang Chia-Wei, Chen Hui-Lung, Chang Jee-Gong

机构信息

Department of Mechanical and Electro-Mechanical Engineering, Center for Nanoscience and Nanotechnology, National Sun-Yat-Sen University Kaohsiung, Taiwan, ROC.

出版信息

J Chem Phys. 2008 Apr 21;128(15):154703. doi: 10.1063/1.2897931.

Abstract

Molecular dynamic simulation is used to investigate the adsorption mechanism of water molecules surrounding Au nanoparticles with different sizes. Our results show that the adsorption mechanism of the water molecules in the first water shell will be influenced by the size of the Au nanoparticle. For the larger Au nanoparticles, the hydrogen bonding of water molecules adsorbed on the surface of the Au nanoparticles are arranged in a two-dimensional structure, while those adsorbed on the edge of the surface of the Au nanoparticles are arranged in a three-dimensional structure. However, in the case of the smallest Au nanoparticle, the hydrogen bonding of the water molecules on the first adsorbed layer are arranged only in a three-dimensional structure. The arrangement of the water molecules in the first water shell can be determined by orientation order parameter. The water molecules that adsorb on the larger Au nanoparticles tend to arrange in an irregular arrangement, while those adsorbed on the smallest Au nanoparticle tend to arrange a regular arrangement. Interestingly, the water molecules adsorbed on the smallest nanoparticle are arranged in a bulklike structure in the first shell.

摘要

分子动力学模拟用于研究不同尺寸金纳米颗粒周围水分子的吸附机制。我们的结果表明,第一水层中水分子的吸附机制会受到金纳米颗粒尺寸的影响。对于较大的金纳米颗粒,吸附在金纳米颗粒表面的水分子的氢键呈二维结构排列,而吸附在金纳米颗粒表面边缘的水分子的氢键呈三维结构排列。然而,在最小的金纳米颗粒的情况下,第一吸附层上水分子的氢键仅呈三维结构排列。第一水层中水分子的排列可以通过取向序参数来确定。吸附在较大金纳米颗粒上的水分子倾向于呈不规则排列,而吸附在最小金纳米颗粒上的水分子倾向于呈规则排列。有趣的是,吸附在最小纳米颗粒上的水分子在第一壳层中呈块状结构排列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验