Zanella Rodolfo, Sandoval Alberto, Santiago Patricia, Basiuk Vladimir A, Saniger José M
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, A. P. 70-186, C. P. 04510, Ciudad Universitaria, México D. F., Mexico. zanella@ aleph.cinstrum.unam.mx
J Phys Chem B. 2006 May 4;110(17):8559-65. doi: 10.1021/jp060601y.
It is shown that adsorption of the Au(en)(2) cationic complex can be successfully employed for the deposition of gold nanoparticles (1.5 to 3 nm) onto SiO(2) with high metal loading, good dispersion, and small Au particle size. When the solution pH increases (from 3.8 to 10.5), the Au loading in the Au/SiO(2) samples increases proportionally (from 0.2 to 5.5 wt %), and the average gold particle size also increases (from 1.5 to 2.4 nm). These effects are explained by the increase in the amount of negatively charged sites present on the SiO(2) surface, namely, when the solution pH increases, a higher number of Au(en)(2) species can be adsorbed. Extending the adsorption time from 2 to 16 h gives rise to an increase in the gold loading from 3.3 to 4.0 wt % and in the average particle size from 1.8 to 2.9 nm. Different morphologies of gold nanoparticles are present as a function of the particle size. Particles with a size of 3-5 nm show defective structure, some of them having a multiple twinning particle (MTP) structure. At the same time, nanoparticles with an average size of ca. 2 nm exhibit defect-free structure with well-distinguishable {111} family planes. TEM and HAADF observations revealed that Au particles do not agglomerate on the SiO(2) support: gold is present on the surface of SiO(2) only as small particles. Density functional theory calculations were employed to study the mechanisms of Au(en)(2) adsorption, where neutral and negatively charged silica surfaces were simulated by neutral cluster Si(4)O(10)H(4) and negatively charged cluster Si(4)O(10)H(3), respectively. The calculation results are totally consistent with the suggestion that the deposition of gold takes place according to a cationic adsorption mechanism.
结果表明,Au(en)(2)阳离子络合物的吸附可成功用于将金纳米颗粒(1.5至3纳米)沉积到SiO(2)上,具有高金属负载量、良好的分散性和较小的金颗粒尺寸。当溶液pH值增加(从3.8到10.5)时,Au/SiO(2)样品中的金负载量成比例增加(从0.2到5.5 wt%),并且平均金颗粒尺寸也增加(从1.5到2.4纳米)。这些效应可以通过SiO(2)表面带负电位点数量的增加来解释,也就是说,当溶液pH值增加时,可以吸附更多数量的Au(en)(2)物种。将吸附时间从2小时延长至16小时会导致金负载量从3.3 wt%增加到4.0 wt%,平均颗粒尺寸从1.8纳米增加到2.9纳米。金纳米颗粒呈现出不同的形态,这是颗粒尺寸的函数。尺寸为3 - 5纳米的颗粒显示出有缺陷的结构,其中一些具有多重孪晶颗粒(MTP)结构。同时,平均尺寸约为2纳米的纳米颗粒呈现出无缺陷结构,具有清晰可辨的{111}族平面。透射电子显微镜(TEM)和高角度环形暗场(HAADF)观察表明,金颗粒不会在SiO(2)载体上团聚:金仅以小颗粒形式存在于SiO(2)表面。采用密度泛函理论计算来研究Au(en)(2)的吸附机制,其中中性和带负电的二氧化硅表面分别由中性簇Si(4)O(10)H(4)和带负电的簇Si(4)O(10)H(3)模拟。计算结果与金的沉积按照阳离子吸附机制进行的观点完全一致。