Suppr超能文献

I 型代谢型谷氨酸受体调节脆性 X 智力低下蛋白过程中钙刺激的腺苷酸环化酶和钙调蛋白依赖性蛋白激酶 IV 的作用

Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors.

作者信息

Wang Hansen, Wu Long-Jun, Zhang Fuxing, Zhuo Min

机构信息

Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8.

出版信息

J Neurosci. 2008 Apr 23;28(17):4385-97. doi: 10.1523/JNEUROSCI.0646-08.2008.

Abstract

The fragile X syndrome is caused by the lack of fragile X mental retardation protein (FMRP) attributable to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the CNS contribute to different brain functions, including learning/memory, mental disorders, drug addiction, and persistent pain. Most of the previous studies have been focused on downstream targets of FMRP in hippocampal neurons, and fewer studies have been reported for the second-messenger signaling pathways between group I mGluRs and FMRP. Furthermore, no molecular study has been performed in the anterior cingulate cortex (ACC), a key region involved in high brain cognitive and executive functions. In this study, we demonstrate that activation of group I mGluR upregulated FMRP in ACC neurons of adult mice through the Ca(2+)-dependent signaling pathways. Using genetic approaches, we found that Ca(2+)/calmodulin-stimulated adenylyl cyclase 1 (AC1) and calcium/calmodulin-dependent kinase IV (CaMKIV) contribute to the upregulation of FMRP induced by stimulating group I mGluRs. The upregulation of FMRP occurs at the transcriptional level. The cAMP-dependent protein kinase is activated by stimulating group I mGluRs through AC1 in ACC neurons. Both AC1 and CaMKIV contribute to the regulation of FMRP by group I mGluRs probably through cAMP response element-binding protein activation. Our study has provided the first evidence for a molecular link between group I mGluRs and FMRP in ACC neurons and may help us to understand the pathogenesis of fragile X syndrome.

摘要

脆性X综合征是由FMR1基因沉默导致脆性X智力低下蛋白(FMRP)缺乏引起的。中枢神经系统中的代谢型谷氨酸受体(mGluRs)参与不同的脑功能,包括学习/记忆、精神障碍、药物成瘾和持续性疼痛。此前的大多数研究都集中在海马神经元中FMRP的下游靶点,而关于I组mGluRs和FMRP之间的第二信使信号通路的报道较少。此外,尚未在前扣带回皮质(ACC)进行分子研究,ACC是参与高级脑认知和执行功能的关键区域。在本研究中,我们证明I组mGluR的激活通过Ca(2+)依赖的信号通路上调成年小鼠ACC神经元中的FMRP。使用遗传学方法,我们发现Ca(2+)/钙调蛋白刺激的腺苷酸环化酶1(AC1)和钙/钙调蛋白依赖性激酶IV(CaMKIV)有助于I组mGluRs刺激诱导的FMRP上调。FMRP的上调发生在转录水平。cAMP依赖性蛋白激酶通过ACC神经元中的AC1刺激I组mGluRs而被激活。AC1和CaMKIV可能都通过cAMP反应元件结合蛋白激活来参与I组mGluRs对FMRP的调节。我们的研究首次提供了I组mGluRs与ACC神经元中FMRP之间分子联系的证据,并可能有助于我们理解脆性X综合征的发病机制。

相似文献

5
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome.
J Neurosci. 2019 Sep 18;39(38):7453-7464. doi: 10.1523/JNEUROSCI.1443-17.2019. Epub 2019 Jul 26.
6
The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain.
Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2180-5. doi: 10.1073/pnas.0409803102. Epub 2005 Jan 31.
7
FMRP acts as a key messenger for visceral pain modulation.
Mol Pain. 2020 Jan-Dec;16:1744806920972241. doi: 10.1177/1744806920972241.
8
Dysregulation of mTOR signaling in fragile X syndrome.
J Neurosci. 2010 Jan 13;30(2):694-702. doi: 10.1523/JNEUROSCI.3696-09.2010.
10
Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice.
J Neurosci. 2015 Feb 4;35(5):2033-43. doi: 10.1523/JNEUROSCI.2644-14.2015.

引用本文的文献

2
Endogenous Gαq-Coupled Neuromodulator Receptors Activate Protein Kinase A.
Neuron. 2017 Dec 6;96(5):1070-1083.e5. doi: 10.1016/j.neuron.2017.10.023. Epub 2017 Nov 16.
3
Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex.
Mol Pain. 2017 Jan-Dec;13:1744806917719847. doi: 10.1177/1744806917719847.
5
Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model.
Mol Pain. 2016 Sep 9;12. doi: 10.1177/1744806916652409. Print 2016.
8
Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes.
Front Cell Neurosci. 2015 Feb 26;9:55. doi: 10.3389/fncel.2015.00055. eCollection 2015.
9
Fragile X mental retardation protein: from autism to neurodegenerative disease.
Front Cell Neurosci. 2015 Feb 12;9:43. doi: 10.3389/fncel.2015.00043. eCollection 2015.
10
GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex.
J Neurosci. 2014 Oct 1;34(40):13505-15. doi: 10.1523/JNEUROSCI.1431-14.2014.

本文引用的文献

1
Cortical excitation and chronic pain.
Trends Neurosci. 2008 Apr;31(4):199-207. doi: 10.1016/j.tins.2008.01.003. Epub 2008 Mar 7.
2
Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15537-42. doi: 10.1073/pnas.0707484104. Epub 2007 Sep 19.
3
Genetic evidence for the requirement of adenylyl cyclase 1 in synaptic scaling of forebrain cortical neurons.
Eur J Neurosci. 2007 Jul;26(2):275-88. doi: 10.1111/j.1460-9568.2007.05669.x.
4
Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11489-94. doi: 10.1073/pnas.0705003104. Epub 2007 Jun 25.
6
Fragile X syndrome: molecular mechanisms of cognitive dysfunction.
Am J Psychiatry. 2007 Apr;164(4):556. doi: 10.1176/ajp.2007.164.4.556.
8
Delineation of early attentional control difficulties in fragile X syndrome: focus on neurocomputational changes.
Neuropsychologia. 2007 Apr 9;45(8):1889-98. doi: 10.1016/j.neuropsychologia.2006.12.005. Epub 2007 Jan 24.
9
Group I metabotropic glutamate receptor-induced Ca(2+)-gradients in rat superficial spinal dorsal horn neurons.
Neuropharmacology. 2007 Mar;52(3):1015-23. doi: 10.1016/j.neuropharm.2006.10.020. Epub 2006 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验