Suppr超能文献

脆性 X 综合征中 mTOR 信号的失调。

Dysregulation of mTOR signaling in fragile X syndrome.

机构信息

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461, USA.

出版信息

J Neurosci. 2010 Jan 13;30(2):694-702. doi: 10.1523/JNEUROSCI.3696-09.2010.

Abstract

Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of fragile X syndrome, exhibits cognitive deficits and exaggerated metabotropic glutamate receptor (mGluR)-dependent long-term depression at CA1 synapses. However, the molecular mechanisms that link loss of function of FMRP to aberrant synaptic plasticity remain unclear. The mammalian target of rapamycin (mTOR) signaling cascade controls initiation of cap-dependent translation and is under control of mGluRs. Here we show that mTOR phosphorylation and activity are elevated in hippocampus of juvenile Fmr1 knock-out mice by four functional readouts: (1) association of mTOR with regulatory associated protein of mTOR; (2) mTOR kinase activity; (3) phosphorylation of mTOR downstream targets S6 kinase and 4E-binding protein; and (4) formation of eukaryotic initiation factor complex 4F, a critical first step in cap-dependent translation. Consistent with this, mGluR long-term depression at CA1 synapses of FMRP-deficient mice is exaggerated and rapamycin insensitive. We further show that the p110 subunit of the upstream kinase phosphatidylinositol 3-kinase (PI3K) and its upstream activator PI3K enhancer PIKE, predicted targets of FMRP, are upregulated in knock-out mice. Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome.

摘要

脆性 X 综合征是最常见的遗传性智力障碍形式,也是自闭症的主要遗传病因,由 Fmr1 基因的转录沉默引起。脆性 X 智力低下蛋白(FMRP)是 Fmr1 的基因产物,是一种 RNA 结合蛋白,可负向调节神经元中的翻译。Fmr1 敲除小鼠是脆性 X 综合征的模型,表现出认知缺陷和 CA1 突触中代谢型谷氨酸受体(mGluR)依赖性长时程抑制(LTD)过度增强。然而,将 FMRP 功能丧失与异常突触可塑性联系起来的分子机制尚不清楚。哺乳动物雷帕霉素靶蛋白(mTOR)信号级联反应控制帽依赖性翻译的起始,受 mGluR 控制。在这里,我们通过四个功能指标显示:(1)mTOR 与 mTOR 调节相关蛋白的结合;(2)mTOR 激酶活性;(3)mTOR 下游靶标 S6 激酶和 4E 结合蛋白的磷酸化;(4)真核起始因子 4F 的形成,这是帽依赖性翻译的关键第一步,表明在幼年 Fmr1 敲除小鼠的海马体中,mTOR 磷酸化和活性升高。与此一致的是,FMRP 缺乏小鼠 CA1 突触中的 mGluR 长时程抑制增强且对雷帕霉素不敏感。我们进一步表明,PI3K 上游激酶磷脂酰肌醇 3-激酶(PI3K)的 p110 亚基及其上游激活剂 PI3K 增强子 PIKE,即 FMRP 的预测靶标,在敲除小鼠中上调。升高的 mTOR 信号可能为 I 组 mGluR 的过度激活与脆性 X 小鼠异常突触可塑性之间提供功能联系,这与脆性 X 综合征认知障碍相关。

相似文献

1
Dysregulation of mTOR signaling in fragile X syndrome.
J Neurosci. 2010 Jan 13;30(2):694-702. doi: 10.1523/JNEUROSCI.3696-09.2010.
3
5
Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice.
Hum Mol Genet. 2013 Mar 15;22(6):1180-92. doi: 10.1093/hmg/dds525. Epub 2012 Dec 18.
7
8
Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice.
Neuron. 2012 Oct 18;76(2):325-37. doi: 10.1016/j.neuron.2012.07.022. Epub 2012 Oct 17.
9
Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology.
Brain Res. 2011 Jul 5;1399:79-95. doi: 10.1016/j.brainres.2011.05.020. Epub 2011 May 17.

引用本文的文献

1
Increased translation in adult mouse striatum is sufficient to induce motor dysfunction.
Brain Commun. 2025 Jun 19;7(4):fcaf250. doi: 10.1093/braincomms/fcaf250. eCollection 2025.
2
From Discovery to Innovative Translational Approaches in 80 Years of Fragile X Syndrome Research.
Biomedicines. 2025 Mar 27;13(4):805. doi: 10.3390/biomedicines13040805.
5
6
Drug Treatments for Neurodevelopmental Disorders: Targeting Signaling Pathways and Homeostasis.
Curr Neurol Neurosci Rep. 2024 Dec 6;25(1):7. doi: 10.1007/s11910-024-01394-3.
7
Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis.
Mol Psychiatry. 2025 Apr;30(4):1676-1688. doi: 10.1038/s41380-024-02863-4. Epub 2024 Dec 5.
8
Exploring the dynamics of messenger ribonucleoprotein-mediated translation repression.
Biochem Soc Trans. 2024 Dec 19;52(6):2267-2279. doi: 10.1042/BST20231240.
9
The function of toward the development of excitatory and inhibitory cortical neurons.
Front Cell Neurosci. 2024 Sep 23;18:1465821. doi: 10.3389/fncel.2024.1465821. eCollection 2024.

本文引用的文献

1
Protein translation in synaptic plasticity: mGluR-LTD, Fragile X.
Curr Opin Neurobiol. 2009 Jun;19(3):319-26. doi: 10.1016/j.conb.2009.03.011. Epub 2009 May 4.
2
Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models.
J Neurophysiol. 2009 May;101(5):2572-80. doi: 10.1152/jn.90558.2008. Epub 2009 Feb 25.
3
Understanding PTEN regulation: PIP2, polarity and protein stability.
Oncogene. 2008 Sep 18;27(41):5464-76. doi: 10.1038/onc.2008.243.
4
PTEN signaling in brain: neuropathology and tumorigenesis.
Oncogene. 2008 Sep 18;27(41):5416-30. doi: 10.1038/onc.2008.239.
7
Kinase signaling pathways as potential targets in the treatment of Parkinson's disease.
Expert Rev Proteomics. 2007 Dec;4(6):783-92. doi: 10.1586/14789450.4.6.783.
8
The pathophysiology of fragile x syndrome.
Annu Rev Genomics Hum Genet. 2007;8:109-29. doi: 10.1146/annurev.genom.8.080706.092249.
9
mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer.
Trends Mol Med. 2007 Jun;13(6):252-9. doi: 10.1016/j.molmed.2007.04.002. Epub 2007 Apr 23.
10
Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1.
Lancet Neurol. 2007 Jan;6(1):45-55. doi: 10.1016/S1474-4422(06)70676-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验