Suppr超能文献

蓝斑α1肾上腺素能受体可能的多巴胺能刺激参与行为激活。

Possible dopaminergic stimulation of locus coeruleus alpha1-adrenoceptors involved in behavioral activation.

作者信息

Lin Yan, Quartermain David, Dunn Adrian J, Weinshenker David, Stone Eric A

机构信息

Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA.

出版信息

Synapse. 2008 Jul;62(7):516-23. doi: 10.1002/syn.20517.

Abstract

alpha(1)-Adrenoceptors of the locus coeruleus (LC) have been implicated in behavioral activation in novel surroundings, but the endogenous agonist that activates these receptors has not been established. In addition to the canonical activation of alpha(1)-receptors by norepinephrine (NE), there is evidence that dopamine (DA) may also activate certain brain alpha(1)-receptors. This study examined the contribution of DA to exploratory activity in a novel cage by determining the effect of infusion of various dopaminergic and adrenergic drugs into the mouse LC. It was found that the D2/D3 agonist, quinpirole, which selectively blocks the release of CNS DA, produced a dose-dependent and virtually complete abolition of exploration and all movement in the novel cage test. The quinpirole-induced inactivity was significantly attenuated by coinfusion of DA but not by the D1 agonist, SKF38390. Furthermore, the DA attenuation of quinpirole inactivity was blocked by coinfusion of the alpha(1)-adrenergic receptor antagonist, terazosin, but not by the D1 receptor antagonist, SCH23390. LC infusions of either quinpirole or terazosin also produced profound inactivity in DA-beta-hydroxylase knockout (Dbh -/-) mice that lack NE, indicating that their behavioral effects were not due to an alteration of the release or action of LC NE. Measurement of endogenous DA, NE, and 5HT and their metabolites in the LC during exposure to the novel cage indicated an increase in the turnover of DA and NE but not 5HT. These results indicate that DA is a candidate as an endogenous agonist for behaviorally activating LC alpha(1)-receptors and may play a role in the activation of this nucleus by novel surroundings.

摘要

蓝斑(LC)的α(1)-肾上腺素能受体与在新环境中的行为激活有关,但激活这些受体的内源性激动剂尚未确定。除了去甲肾上腺素(NE)对α(1)-受体的经典激活外,有证据表明多巴胺(DA)也可能激活某些脑α(1)-受体。本研究通过确定向小鼠蓝斑内注射各种多巴胺能和肾上腺素能药物的效果,来检验多巴胺对在新笼子中探索活动的作用。结果发现,选择性阻断中枢神经系统多巴胺释放的D2/D3激动剂喹吡罗,在新笼子试验中产生了剂量依赖性且几乎完全消除探索和所有活动的效果。同时注射多巴胺可显著减轻喹吡罗诱导的不活动,但D1激动剂SKF38390则无此作用。此外,同时注射α(1)-肾上腺素能受体拮抗剂特拉唑嗪可阻断多巴胺对喹吡罗诱导的不活动的减轻作用,但D1受体拮抗剂SCH23390则无此作用。向蓝斑内注射喹吡罗或特拉唑嗪也会使缺乏去甲肾上腺素的多巴胺-β-羟化酶基因敲除(Dbh-/-)小鼠产生深度不活动,这表明它们的行为效应并非由于蓝斑去甲肾上腺素释放或作用的改变。在暴露于新笼子期间测量蓝斑内的内源性多巴胺、去甲肾上腺素和5-羟色胺及其代谢产物,结果表明多巴胺和去甲肾上腺素的周转率增加,但5-羟色胺的周转率未增加。这些结果表明,多巴胺可能是行为激活蓝斑α(1)-受体的内源性激动剂候选物,并可能在新环境激活该核团中发挥作用。

相似文献

2
Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
ACS Chem Neurosci. 2017 Sep 20;8(9):1913-1924. doi: 10.1021/acschemneuro.7b00078. Epub 2017 Jun 21.
4
Behavioral responses of dopamine beta-hydroxylase knockout mice to modafinil suggest a dual noradrenergic-dopaminergic mechanism of action.
Pharmacol Biochem Behav. 2008 Dec;91(2):217-22. doi: 10.1016/j.pbb.2008.07.014. Epub 2008 Jul 25.
6
Mice with chronic norepinephrine deficiency resemble amphetamine-sensitized animals.
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13873-7. doi: 10.1073/pnas.212519999. Epub 2002 Oct 7.
7
Marked behavioral activation from inhibitory stimulation of locus coeruleus alpha1-adrenoceptors by a full agonist.
Brain Res. 2009 Sep 29;1291:21-31. doi: 10.1016/j.brainres.2009.07.049. Epub 2009 Jul 24.
8
Dopamine activates noradrenergic receptors in the preoptic area.
J Neurosci. 2002 Nov 1;22(21):9320-30. doi: 10.1523/JNEUROSCI.22-21-09320.2002.
9
Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons.
J Neurosci. 2020 Oct 21;40(43):8367-8385. doi: 10.1523/JNEUROSCI.1720-20.2020. Epub 2020 Sep 29.

引用本文的文献

1
The dopaminergic system and Alzheimer's disease.
Neural Regen Res. 2025 Sep 1;20(9):2495-2512. doi: 10.4103/NRR.NRR-D-24-00230. Epub 2024 Sep 24.
2
Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system.
Front Comput Neurosci. 2024 Aug 23;18:1386841. doi: 10.3389/fncom.2024.1386841. eCollection 2024.
3
Localization and neurochemical identity of alpha1-adrenergic receptor-containing elements in the mouse locus coeruleus.
J Chem Neuroanat. 2023 Nov;133:102343. doi: 10.1016/j.jchemneu.2023.102343. Epub 2023 Sep 28.
4
Significant Functional Differences Between Dopamine D Receptor Polymorphic Variants Upon Heteromerization with α Adrenoreceptors.
Mol Neurobiol. 2023 Nov;60(11):6566-6583. doi: 10.1007/s12035-023-03476-8. Epub 2023 Jul 18.
6
Interconnection between Adrenergic and Dopaminergic Systems in Feeding Behavior in Neonatal Chicks.
Arch Razi Inst. 2021 Jul;76(2):345-358. doi: 10.22092/ari.2020.341240.1425. Epub 2021 Jul 1.
7
α-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition.
Front Pharmacol. 2020 Sep 29;11:581098. doi: 10.3389/fphar.2020.581098. eCollection 2020.
8
The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation.
Front Neurosci. 2020 Feb 12;14:101. doi: 10.3389/fnins.2020.00101. eCollection 2020.
10
Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats.
J Neurophysiol. 2017 Sep 1;118(3):1501-1514. doi: 10.1152/jn.00145.2017. Epub 2017 Jun 14.

本文引用的文献

2
Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2007 Aug 15;31(6):1196-207. doi: 10.1016/j.pnpbp.2007.04.010. Epub 2007 Apr 24.
3
Central alpha1-adrenergic system in behavioral activity and depression.
Biochem Pharmacol. 2007 Apr 15;73(8):1063-75. doi: 10.1016/j.bcp.2006.10.001. Epub 2006 Oct 5.
4
Role of alpha(1)-adrenoceptors of the locus coeruleus in self-stimulation of the medial forebrain bundle.
Neuropsychopharmacology. 2007 Apr;32(4):835-41. doi: 10.1038/sj.npp.1301145. Epub 2006 Jul 5.
5
The mesolimbic dopamine reward circuit in depression.
Biol Psychiatry. 2006 Jun 15;59(12):1151-9. doi: 10.1016/j.biopsych.2005.09.018. Epub 2006 Mar 29.
6
Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance.
J Comp Neurol. 2005 Dec 5;493(1):99-110. doi: 10.1002/cne.20723.
7
Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity.
Mol Pharmacol. 2006 Jan;69(1):45-55. doi: 10.1124/mol.105.014985. Epub 2005 Sep 29.
8
Alpha(1)-adrenergic and alpha(2)-adrenergic balance in the dorsal pons and gross behavioral activity of mice in a novel environment.
Psychopharmacology (Berl). 2005 Nov;183(1):127-32. doi: 10.1007/s00213-005-0171-8. Epub 2005 Oct 22.
9
Dopaminergic-adrenergic interactions in the wake promoting mechanism of modafinil.
Neuroscience. 2005;132(4):1027-34. doi: 10.1016/j.neuroscience.2005.02.003.
10
Characterization of noradrenaline release in the locus coeruleus of freely moving awake rats by in vivo microdialysis.
Psychopharmacology (Berl). 2005 Jul;180(3):570-9. doi: 10.1007/s00213-005-2181-y. Epub 2005 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验