BK-21 Polymer BIN Fusion Research Team, Department of Polymer Science and Technology, Chonbuk National University, 664-14 Dukjin, Jeonju 561-756, Seoul, Korea.
J Orthop Surg Res. 2008 Apr 25;3:17. doi: 10.1186/1749-799X-3-17.
Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix.
PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM).
Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for cartilage-specific markers, collagen type II and aggrecan core protein. Interestingly, suppression of cartilage dedifferentiation marker; collagen type I was observed after 2 and 3 weeks of in vitro culture. The sulphated-glycosaminoglycan (sGAG) production in fibrin/PLGA was significantly higher than in PLGA.
Fibrin/PLGA promotes early in vitro chondrogenesis of rabbit articular chondrocytes. This study suggests that fibrin/PLGA may serve as a potential cell delivery vehicle and a structural basis for in vitro tissue-engineered articular cartilage.
合成的和天然衍生的可生物降解聚合物已被广泛用于构建软骨组织工程的支架。聚(乳酸-共-乙醇酸)(PLGA)是可生物吸收和生物相容的,使其成为临床应用的有前途的工具。为了最大限度地减少接种过程中细胞的丢失,我们使用天然聚合物纤维蛋白来固定细胞,并在 PLGA 支架中提供均匀的细胞分布。我们使用纤维蛋白作为细胞移植基质,评估了兔关节软骨细胞在 PLGA 支架中的体外软骨生成。
将 PLGA 支架浸泡在软骨细胞-纤维蛋白悬浮液(1x106 个细胞/支架)中,并通过滴加凝血酶-氯化钙(CaCl2)溶液使其聚合。PLGA 接种的软骨细胞用作对照。所有构建体均最多培养 21 天。在体外使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物(MTT)测定法在第 1、3、7、14 和 21 天测量细胞增殖活性。在第 1、2 和 3 周的每个时间点进行形态学观察、组织学、免疫组织化学(IHC)、基因表达和硫酸化糖胺聚糖(sGAG)分析,以阐明体外软骨发育和软骨特异性细胞外基质(ECM)的沉积。
细胞增殖活性从第 1 天逐渐增加到第 14 天,然后在第 21 天下降。纤维蛋白/PLGA 杂化构建体中早在第 2 周就检测到明显的软骨组织形成,这可以通过存在软骨分离细胞和富含碱性 ECM 的陷窝来证实。在第 3 周后明显可见软骨形成。纤维蛋白/PLGA 杂化构建体中存在软骨特异性蛋白聚糖和糖胺聚糖(GAG),这通过番红 O 和阿利新蓝染色呈阳性证实。胶原 II 在细胞周围基质中表现出强烈的免疫阳性。软骨形成特性进一步通过软骨特异性标志物、胶原 II 和聚集蛋白核心蛋白的基因表达证明。有趣的是,在体外培养 2 和 3 周后,观察到软骨去分化标志物胶原 I 的抑制。纤维蛋白/PLGA 中的硫酸化糖胺聚糖(sGAG)产量明显高于 PLGA。
纤维蛋白/PLGA 促进了兔关节软骨细胞的早期体外软骨生成。本研究表明,纤维蛋白/PLGA 可作为潜在的细胞输送载体和体外组织工程化关节软骨的结构基础。