Suppr超能文献

多重生物标志物组织微阵列:生物信息学与实用方法

Multiple biomarker tissue microarrays: bioinformatics and practical approaches.

作者信息

Bentzen Søren M, Buffa Francesca M, Wilson George D

机构信息

Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, K4/316 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792, USA.

出版信息

Cancer Metastasis Rev. 2008 Sep;27(3):481-94. doi: 10.1007/s10555-008-9145-8.

Abstract

INTRODUCTION

Tissue microarrays (TMAs) facilitate high-throughput immunohistochemical analysis of potential predictive and prognostic biomarkers in tumor or normal tissue samples. This technology and the practical issues involved in designing TMAs for translational research are reviewed. A main field of application of TMAs is in the search for predictive and prognostic markers in specific types of cancer.

DISCUSSION

Standard data analytical approaches are discussed and some of the issues in applying these in practice are described.

CONCLUSIONS

TMAs allow the collection of information-rich datasets on the simultaneous expression of multiple biomarkers. Supervised and unsupervised strategies have been developed for handling datasets where the number of covariates, in this case biomarker expression data, is large in relation to the number of patients in the sample. Some future research pathways are briefly presented together with the recent attempts to improve the reporting quality of biomarker studies.

摘要

引言

组织微阵列(TMA)有助于对肿瘤或正常组织样本中潜在的预测性和预后生物标志物进行高通量免疫组织化学分析。本文综述了该技术以及为转化研究设计TMA所涉及的实际问题。TMA的一个主要应用领域是在特定类型癌症中寻找预测性和预后标志物。

讨论

讨论了标准数据分析方法,并描述了在实际应用中应用这些方法时的一些问题。

结论

TMA允许收集关于多种生物标志物同时表达的信息丰富的数据集。已经开发了监督和无监督策略来处理协变量数量(在这种情况下为生物标志物表达数据)相对于样本中患者数量较大的数据集。简要介绍了一些未来的研究途径以及最近提高生物标志物研究报告质量的尝试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验