Suppr超能文献

用于评估卵巢癌生物标志物的组织微阵列抽样策略。

Sampling strategies for tissue microarrays to evaluate biomarkers in ovarian cancer.

作者信息

Permuth-Wey Jenny, Boulware David, Valkov Nikola, Livingston Sandra, Nicosia Santo, Lee Ji-Hyun, Sutphen Rebecca, Schildkraut Joellen, Narod Steven, Parker Alex, Coppola Domenico, Sellers Thomas, Pal Tuya

机构信息

H. Lee Moffitt Cancer Center, Tampa, FL, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2009 Jan;18(1):28-34. doi: 10.1158/1055-9965.EPI-08-0713.

Abstract

INTRODUCTION

Tissue microarrays (TMA) enable rapid analysis of biomarkers in large-scale studies involving archival tumor specimens, however, their utility in heterogeneous tumors such as ovarian cancer is limited.

METHODS

In this study, immunohistochemical analysis was done on TMAs comprised of epithelial ovarian cancer (EOC) to estimate the prevalence of loss of expression of three mismatch repair proteins. TMAs were initially created using cores sampled from the center of donor tissue blocks from 59 EOC cases. Full sections were subsequently created and levels of expression were compared between tissues sampled from the central portion versus the periphery. Follow-up analyses were done by obtaining cores from the periphery of up to five additional donor blocks per case. A linear mixed model for each protein was used to investigate differences between results from the initial and follow-up blocks.

RESULTS

In the original TMAs created using centrally sampled cores, loss of mismatch repair expression was noted in 17 (29%) of the 59 cases. By comparison, analyses from peripherally sampled cores revealed loss of expression in only 6 of these 17 cases. For each protein, significant differences (P < 0.05) were detected between results from the initial donor block and the majority of the follow-up blocks.

CONCLUSIONS

Our investigations, based on EOC, suggest that sampling variability in protein expression may result when TMAs are used. Thus, at least for EOC, it is important to preferentially sample from the periphery of tumor blocks where exposure to tissue fixatives is optimal.

摘要

引言

组织微阵列(TMA)能够在涉及存档肿瘤标本的大规模研究中快速分析生物标志物,然而,它们在卵巢癌等异质性肿瘤中的效用有限。

方法

在本研究中,对由上皮性卵巢癌(EOC)组成的TMA进行免疫组织化学分析,以估计三种错配修复蛋白表达缺失的发生率。TMA最初使用从59例EOC病例的供体组织块中心采集的芯块创建。随后制作完整切片,并比较从中心部分与周边采集的组织之间的表达水平。通过从每个病例额外最多五个供体块的周边获取芯块进行后续分析。使用针对每种蛋白质的线性混合模型来研究初始块和后续块结果之间的差异。

结果

在使用中心采样芯块创建的原始TMA中,59例中有17例(29%)出现错配修复表达缺失。相比之下,周边采样芯块的分析显示,这17例中只有6例出现表达缺失。对于每种蛋白质,在初始供体块和大多数后续块的结果之间检测到显著差异(P < 0.05)。

结论

我们基于EOC的研究表明,使用TMA时可能会导致蛋白质表达的采样变异性。因此,至少对于EOC而言,优先从肿瘤块周边采样很重要,因为那里对组织固定剂的暴露是最佳的。

相似文献

1
Sampling strategies for tissue microarrays to evaluate biomarkers in ovarian cancer.
Cancer Epidemiol Biomarkers Prev. 2009 Jan;18(1):28-34. doi: 10.1158/1055-9965.EPI-08-0713.
2
Tissue microarray sampling strategy for prostate cancer biomarker analysis.
Am J Surg Pathol. 2002 Mar;26(3):312-9. doi: 10.1097/00000478-200203000-00004.
4
Tissue microarray is suitable for scientific biomarkers studies in endometrial cancer.
Virchows Arch. 2018 Mar;472(3):407-413. doi: 10.1007/s00428-017-2289-6. Epub 2018 Feb 9.
9
Virtual Tissue Microarrays for Validating Digital Biomarker Analysis in Colorectal Carcinoma.
Lab Invest. 2025 Apr;105(4):104098. doi: 10.1016/j.labinv.2025.104098. Epub 2025 Jan 31.
10
Constructing high-density tissue microarrays with a novel method and a self-made tissue-arraying instrument.
Pathol Res Pract. 2023 May;245:154430. doi: 10.1016/j.prp.2023.154430. Epub 2023 Mar 27.

引用本文的文献

1
The prevalence of mismatch repair deficiency in ovarian cancer: A systematic review and meta-analysis.
Int J Cancer. 2022 Nov 1;151(9):1626-1639. doi: 10.1002/ijc.34165. Epub 2022 Jul 6.
2
MRE11 and ATM Expression Levels Predict Rectal Cancer Survival and Their Association with Radiotherapy Response.
PLoS One. 2016 Dec 8;11(12):e0167675. doi: 10.1371/journal.pone.0167675. eCollection 2016.
3
Impact of tissue sampling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer.
Diagn Pathol. 2016 Aug 30;11(1):82. doi: 10.1186/s13000-016-0525-z.
4
Estrogen receptor-alpha as a predictive biomarker in endometrioid endometrial cancer.
Gynecol Oncol. 2016 May;141(2):312-317. doi: 10.1016/j.ygyno.2016.03.006. Epub 2016 Mar 10.
6
Assessment of hepatocyte growth factor in ovarian cancer mortality.
Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1638-48. doi: 10.1158/1055-9965.EPI-11-0455. Epub 2011 Jul 1.
7
Development and validation of a protein-based signature for the detection of ovarian cancer.
Clin Lab Med. 2009 Mar;29(1):47-55. doi: 10.1016/j.cll.2009.02.001.
8
Theory of sampling and its application in tissue based diagnosis.
Diagn Pathol. 2009 Feb 16;4:6. doi: 10.1186/1746-1596-4-6.

本文引用的文献

1
Multiple biomarker tissue microarrays: bioinformatics and practical approaches.
Cancer Metastasis Rev. 2008 Sep;27(3):481-94. doi: 10.1007/s10555-008-9145-8.
5
Standardizing slide-based assays in breast cancer: hormone receptors, HER2, and sentinel lymph nodes.
Clin Cancer Res. 2007 May 15;13(10):2831-5. doi: 10.1158/1078-0432.CCR-06-2522.
6
The heterogeneity of epithelial ovarian cancers: reconciling old and new paradigms.
Expert Rev Mol Med. 2007 May 4;9(13):1-12. doi: 10.1017/S1462399407000324.
7
Risk factors for ovarian cancer histotypes.
Eur J Cancer. 2007 May;43(7):1208-13. doi: 10.1016/j.ejca.2007.01.035. Epub 2007 Mar 21.
8
Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian cancer before age 40.
Int J Gynecol Cancer. 2007 Jul-Aug;17(4):789-93. doi: 10.1111/j.1525-1438.2007.00875.x. Epub 2007 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验