Suppr超能文献

64层多排螺旋CT扫描及CT静脉成像在脑静脉血栓形成病例中的诊断作用

Diagnostic role of 64-slice multidetector row CT scan and CT venogram in cases of cerebral venous thrombosis.

作者信息

Gaikwad Anand B, Mudalgi Bharat A, Patankar Kiran B, Patil Jitendra K, Ghongade Dhananjay V

机构信息

Apple Hospitals and Research Institute, Vyapar peth, Kolhapur, Maharashtra, India.

出版信息

Emerg Radiol. 2008 Sep;15(5):325-33. doi: 10.1007/s10140-008-0723-4. Epub 2008 Apr 24.

Abstract

Retrospective review of patients with cerebral venous thrombosis (CVT) detected by 64-slice multidetector row computed tomography (MDCT). To evaluate the role of CT scan as the primary modality of imaging in suspected cases of CVT. Between October 2006 and September 2007, 53 patients, suspected to have CVT, underwent CT scan of the brain. Out of these, 33 patients were included in the study, who underwent non-contrast CT (NCCT), CT venous angiogram (MDCTA) and magnetic resonance venogram. Two blinded readers evaluated the NCCT and MDCTA. Final diagnosis was obtained after consensus reading of all the imaging by the two readers. Out of the total 33 patients, 20 patients were detected to have thrombosis of one or more of the cerebral venous sinuses or veins, at the concluding consensus reading. MDCTA together with NCCT could identify thrombosis in all of the 20 patients, i.e., 100% sensitivity and specificity. Sixty-four-slice MDCTA together with NCCT provided 100% sensitivity and specificity for the identification of CVT. It can be considered as a cost-effective and widely available, primary imaging modality in emergency situations.

摘要

对64层多排螺旋计算机断层扫描(MDCT)检测出的脑静脉血栓形成(CVT)患者进行回顾性研究。以评估CT扫描作为疑似CVT病例主要成像方式的作用。2006年10月至2007年9月期间,53例疑似患有CVT的患者接受了脑部CT扫描。其中,33例患者被纳入研究,他们接受了非增强CT(NCCT)、CT静脉血管造影(MDCTA)和磁共振静脉造影。两名盲法阅片者对NCCT和MDCTA进行评估。两名阅片者对所有影像进行一致性阅片后得出最终诊断。在总共33例患者中,在最终一致性阅片时,有20例患者被检测出一个或多个脑静脉窦或静脉存在血栓形成。MDCTA与NCCT联合可在所有20例患者中识别出血栓形成,即敏感性和特异性均为100%。64层MDCTA与NCCT联合对CVT的识别敏感性和特异性均为100%。它可被视为紧急情况下一种经济高效且广泛可用的主要成像方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验