含漂移的功能磁共振成像数据的分析:修正的一般线性模型和贝叶斯估计器。

Analysis of FMRI data with drift: modified general linear model and Bayesian estimator.

作者信息

Luo Huaien, Puthusserypady Sadasivan

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 11576, Singapore.

出版信息

IEEE Trans Biomed Eng. 2008 May;55(5):1504-11. doi: 10.1109/TBME.2008.918563.

Abstract

The slowly varying drift poses a major problem in the analysis of functional magnetic resonance imaging (fMRI) data. In this paper, based on the observation that noise in fMRI is long memory fractional noise and the slowly varying drift resides in a subspace spanned only by large scale wavelets, we examine a modified general linear model (GLM) in wavelet domain under Bayesian framework. This modified model estimates the activation parameters at each scale of wavelet decomposition. Then, a model selection criterion based on the results from the modified scheme is proposed to model the drift. Results obtained from simulated as well as real fMRI data show that the proposed Bayesian estimator can accurately capture the noise structure, and hence, result in robust estimation of the parameters in GLM. Besides, the proposed model selection criterion works well and could efficiently remove the drift.

摘要

缓慢变化的漂移在功能磁共振成像(fMRI)数据的分析中构成了一个主要问题。在本文中,基于fMRI中的噪声是长记忆分数噪声且缓慢变化的漂移存在于仅由大尺度小波所跨越的子空间这一观察结果,我们在贝叶斯框架下研究了小波域中的一种改进的通用线性模型(GLM)。这个改进的模型在小波分解的每个尺度上估计激活参数。然后,基于改进方案的结果提出了一个模型选择标准来对漂移进行建模。从模拟以及真实fMRI数据获得的结果表明,所提出的贝叶斯估计器能够准确地捕捉噪声结构,因此,能够对GLM中的参数进行稳健估计。此外,所提出的模型选择标准效果良好,并且能够有效地去除漂移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索