Flandin Guillaume, Penny William D
Wellcome Department of Imaging Neuroscience, 12 Queen Square, London WC1N 3BG, UK.
Neuroimage. 2007 Feb 1;34(3):1108-25. doi: 10.1016/j.neuroimage.2006.10.005. Epub 2006 Dec 5.
In previous work we have described a spatially regularised General Linear Model (GLM) for the analysis of brain functional Magnetic Resonance Imaging (fMRI) data where Posterior Probability Maps (PPMs) are used to characterise regionally specific effects. The spatial regularisation is defined over regression coefficients via a Laplacian kernel matrix and embodies prior knowledge that evoked responses are spatially contiguous and locally homogeneous. In this paper we propose to finesse this Bayesian framework by specifying spatial priors using Sparse Spatial Basis Functions (SSBFs). These are defined via a hierarchical probabilistic model which, when inverted, automatically selects an appropriate subset of basis functions. The method includes non-linear wavelet shrinkage as a special case. As compared to Laplacian spatial priors, SSBFs allow for spatial variations in signal smoothness, are more computationally efficient and are robust to heteroscedastic noise. Results are shown on synthetic data and on data from an event-related fMRI experiment.
在之前的工作中,我们描述了一种用于分析脑功能磁共振成像(fMRI)数据的空间正则化通用线性模型(GLM),其中后验概率图(PPM)用于表征区域特异性效应。空间正则化通过拉普拉斯核矩阵在回归系数上定义,并体现了诱发反应在空间上是连续的且局部均匀的先验知识。在本文中,我们建议通过使用稀疏空间基函数(SSBF)指定空间先验来优化这个贝叶斯框架。这些基函数通过分层概率模型定义,该模型在求逆时会自动选择合适的基函数子集。该方法将非线性小波收缩作为一种特殊情况包含在内。与拉普拉斯空间先验相比,SSBF允许信号平滑度存在空间变化,计算效率更高,并且对异方差噪声具有鲁棒性。在合成数据和来自事件相关fMRI实验的数据上展示了结果。