Travesa Anna, Duch Alba, Quintana David G
Department of Biochemistry and Molecular Biology, School of Medicine, and the Center for Biophysical Studies, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain.
J Biol Chem. 2008 Jun 20;283(25):17123-30. doi: 10.1074/jbc.M801402200. Epub 2008 Apr 25.
The DNA damage checkpoint regulates DNA replication and arrests cell cycle progression in response to genotoxic stress. In Saccharomyces cerevisiae, the protein kinase Rad53 plays a central role in preventing genomic instability and maintaining viability in the presence of replication stress and DNA damage. Activation of Rad53 depends on phosphorylation by the upstream kinase Mec1, followed by autophosphorylation on multiple residues. Also critical for cell viability, the molecular mechanism of Rad53 deactivation remains incompletely understood. Rad53 dephosphorylation after repair of a persistent double strand break in G(2)/M has been shown to depend on the presence of the PP2C-type phosphatases Ptc2 and Ptc3. More recently, the PP2A-like protein phosphatase Pph3 has been shown to be required to dephosphorylate Rad53 after DNA methylation damage in S phase. However, we show here that Ptc2/3 are dispensable for Rad53 deactivation after replication stress or DNA methylation damage. Pph3 is also dispensable for the deactivation of Rad53 after replication stress. In addition, Rad53 kinase activity is still deactivated in pph3 null cells after DNA methylation damage, despite persistent Rad53 hyperphosphorylation. Finally, a strain in which the three phosphatases are deleted shows a severe defect in Rad53 kinase deactivation after DNA methylation damage but not after replication stress. In all, our results suggest that distinct phosphatases operate to return Rad53 to its basal state after different genotoxic stresses and that a yet unidentified phosphatase may be responsible for the deactivation of Rad53 after replication stress.
DNA损伤检查点可调节DNA复制,并在基因毒性应激反应中阻止细胞周期进程。在酿酒酵母中,蛋白激酶Rad53在防止基因组不稳定以及在复制应激和DNA损伤存在的情况下维持细胞活力方面发挥着核心作用。Rad53的激活依赖于上游激酶Mec1的磷酸化作用,随后在多个残基上进行自身磷酸化。对细胞活力也至关重要的是,Rad53失活的分子机制仍未完全了解。已表明,在G(2)/M期持续双链断裂修复后,Rad53的去磷酸化作用取决于PP2C型磷酸酶Ptc2和Ptc3的存在。最近,已表明PP2A样蛋白磷酸酶Pph3在S期DNA甲基化损伤后对Rad53去磷酸化是必需的。然而,我们在此表明,在复制应激或DNA甲基化损伤后,Ptc2/3对于Rad53失活并非必需。在复制应激后,Pph3对于Rad53的失活也不是必需的。此外,尽管Rad53持续过度磷酸化,但在DNA甲基化损伤后,Rad53激酶活性在pph3缺失细胞中仍会失活。最后,一种缺失这三种磷酸酶的菌株在DNA甲基化损伤后但在复制应激后,Rad53激酶失活方面表现出严重缺陷。总之,我们的结果表明,在不同的基因毒性应激后,不同的磷酸酶发挥作用使Rad53恢复到其基础状态,并且可能存在一种尚未确定的磷酸酶负责复制应激后Rad53的失活。