Szyjka Shawn J, Aparicio Jennifer G, Viggiani Christopher J, Knott Simon, Xu Weihong, Tavaré Simon, Aparicio Oscar M
Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA.
Genes Dev. 2008 Jul 15;22(14):1906-20. doi: 10.1101/gad.1660408.
Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2-Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Delta cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair.
复制叉在DNA损伤处停滞会产生一个损伤信号,该信号激活Rad53激酶,Rad53激酶通过稳定停滞的复制叉在细胞存活中发挥至关重要的作用。然而,一直缺乏Rad53直接调节复制叉活性的证据,并且复制叉稳定的本质仍不清楚。最近,研究表明缺乏Psy2-Pph3磷酸酶的细胞在DNA损伤后Rad53的去磷酸化以及复制叉重新启动方面存在缺陷,这表明Rad53失活与复制叉重新启动之间存在机制上的联系。为了验证这种可能性,我们在不同的Rad53活性条件下,检测了甲磺酸甲酯(MMS)损伤细胞中复制叉的进展情况。在pph3Δ细胞中Rad53的过度活跃会减缓MMS处理下复制叉的进展,而通过表达显性负性Rad53-KD使Rad53失活,足以在恢复过程中允许复制叉重新启动。此外,PPH3和PTC2(另一种与Rad53无关的磷酸酶)的联合缺失会导致在MMS处理下复制叉完全停滞并致死,这表明Rad53失活是控制复制叉重新启动的关键机制。我们提出了一个通过受损DNA调节复制叉进展的模型,该模型涉及Rad53激活和失活的循环,从而将复制重新启动与DNA修复协调起来。