Wang Xinkang
Discovery Translational Medicine, Wyeth Research, Collegeville, PA 19426, USA.
Thromb Res. 2008;123(2):355-60. doi: 10.1016/j.thromres.2008.03.015. Epub 2008 Apr 29.
Animal models of diseases are essential for therapeutic target validation, drug discovery and development. Increasing evidence has demonstrated the importance of inflammation in thrombosis. Here, murine models of vena cava thrombosis and carotid arterial thrombosis augmented by lipopolysaccharide (LPS) were established and characterized to study the association between inflammation and thrombosis.
Murine (C57BL/6 mice) models of ferric chloride (FeCl(3))-induced carotid arterial and vena cava thrombosis were established. Thrombus formation was measured indirectly by Doppler blood flow (i.e., clot functional interference with blood flow) in the arterial thrombosis model and directly by protein content of the clot in the venous thrombosis model. An optimal concentration of FeCl(3) was defined to induce thrombus formation and used to study the effects of LPS (i.e., a well-known inflammatory stimulus under these conditions). Real-time polymerase chain reaction (PCR) was used to examine the effect of LPS on TNFalpha and IL-1beta mRNA expression in thrombus formation.
Dose-dependent analysis demonstrated that 2 mg/kg, i.p., LPS provided a maximal prothrombotic effect in 2.5% ferric chloride-induced vena cava thrombosis, with a 60% increase in thrombus size (n=8, p<0.05) compared to vehicle treatment. In contrast, 2 mg/kg LPS had no significant effect on thrombus formation in a more severe, 3.5% FeCl(3)-induced vena cava thrombosis. A similar prothrombotic effect was observed for LPS in 2.5% FeCl(3)-induced carotid arterial thrombosis model. Treatment of 2 mg/kg LPS significantly augmented arterial thrombosis immediately (between 5-30 minutes) following FeCl(3) injury as assessed by change of Doppler blood flow (n=8, p<0.05). Real-time PCR demonstrated significant induction of TNFalpha and IL-1beta mRNA expression in the thrombus formation in the vessels in response to LPS challenge.
These data demonstrate that LPS augments thrombus formation in acute vascular injury and that LPS-augmented thrombosis might be a useful tool to study the relationship between inflammation and thrombosis.
疾病动物模型对于治疗靶点验证、药物发现与开发至关重要。越来越多的证据表明炎症在血栓形成中具有重要作用。在此,建立并表征了由脂多糖(LPS)增强的腔静脉血栓形成和颈动脉血栓形成的小鼠模型,以研究炎症与血栓形成之间的关联。
建立了氯化铁(FeCl₃)诱导的小鼠(C57BL/6小鼠)颈动脉和腔静脉血栓形成模型。在动脉血栓形成模型中,通过多普勒血流间接测量血栓形成(即凝块对血流的功能干扰),在静脉血栓形成模型中,通过凝块的蛋白质含量直接测量血栓形成。确定了诱导血栓形成的FeCl₃最佳浓度,并用于研究LPS(即在这些条件下一种众所周知的炎症刺激物)的作用。使用实时聚合酶链反应(PCR)检测LPS对血栓形成过程中TNFα和IL-1β mRNA表达的影响。
剂量依赖性分析表明,2 mg/kg腹腔注射LPS在2.5%氯化铁诱导的腔静脉血栓形成中具有最大的促血栓形成作用,与溶剂处理相比,血栓大小增加了60%(n = 8,p < 0.05)。相比之下,2 mg/kg LPS对更严重的3.5% FeCl₃诱导的腔静脉血栓形成中的血栓形成没有显著影响。在2.5% FeCl₃诱导的颈动脉血栓形成模型中,LPS也观察到类似的促血栓形成作用。通过多普勒血流变化评估,2 mg/kg LPS处理在FeCl₃损伤后立即(5至30分钟之间)显著增强了动脉血栓形成(n = 8,p < 0.05)。实时PCR表明,在LPS刺激下,血管血栓形成过程中TNFα和IL-1β mRNA表达显著诱导。
这些数据表明,LPS在急性血管损伤中增强血栓形成,且LPS增强的血栓形成可能是研究炎症与血栓形成之间关系的有用工具。