Suppr超能文献

原子玻色-哈伯德系统中相滑移诱导的耗散

Phase-slip-induced dissipation in an atomic Bose-Hubbard system.

作者信息

McKay D, White M, Pasienski M, DeMarco B

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA.

出版信息

Nature. 2008 May 1;453(7191):76-9. doi: 10.1038/nature06920.

Abstract

Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium and the generation of resistance in thin superconducting wires. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions. Although phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors--in solids, problems such as uncontrolled noise sources and disorder complicate their study and application. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose-Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose-Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose-Hubbard model.

摘要

相位滑移控制着许多玻色子系统中的耗散,决定了超流氦的临界速度以及细超导线上电阻的产生。技术上的兴趣很大程度上源于涉及纳米级超导电路元件的应用,比如基于量子相位滑移结的标准。尽管高温下热涨落引起的相位滑移已得到很好的理解,但关于相位滑移在小规模超导体中的作用仍存在争议——在固体中,诸如不受控制的噪声源和无序等问题使它们的研究和应用变得复杂。在这里,我们通过实验研究捕获在光学晶格中的超冷原子的输运,表明相位滑移可导致在一个干净且特征明确的玻色 - 哈伯德系统中产生耗散。与之前的工作不同,我们探索了由三维玻色 - 哈伯德模型描述的低速 regime,该 regime 不受不稳定性影响,并且我们测量了温度对耗散强度的影响。在限制抛物线势中原子运动的阻尼率(固体中电阻的类似物)能很好地由一个在零温度下包含有限阻尼的模型拟合。低温行为与相位滑移的量子隧穿理论一致,而在较高温度下,与向相位滑移热激活转变相一致的交叉现象很明显。在飞行时间成像中也观察到了与相位滑移相关的、让人联想到涡旋和涡环的运动诱导特征。这些结果阐明了相位滑移在超流系统中的作用。它们在理解薄膜中观察到的金属相的来源方面可能也具有相关性,或者可作为基于玻色 - 哈伯德模型变体的玻色子耗散理论的试验台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验