Wallraff A, Lukashenko A, Lisenfeld J, Kemp A, Fistul M V, Koval Y, Ustinov A V
Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.
Nature. 2003 Sep 11;425(6954):155-8. doi: 10.1038/nature01826.
Vortices occur naturally in a wide range of gases and fluids, from macroscopic to microscopic scales. In Bose-Einstein condensates of dilute atomic gases, superfluid helium and superconductors, the existence of vortices is a consequence of the quantum nature of the system. Quantized vortices of supercurrent are generated by magnetic flux penetrating the material, and play a key role in determining the material properties and the performance of superconductor-based devices. At high temperatures the dynamics of such vortices are essentially classical, while at low temperatures previous experiments have suggested collective quantum dynamics. However, the question of whether vortex tunnelling occurs at low temperatures has been addressed only for large collections of vortices. Here we study the quantum dynamics of an individual vortex in a superconducting Josephson junction. By measuring the statistics of the vortex escape from a controllable pinning potential, we demonstrate the existence of quantized levels of the vortex energy within the trapping potential well and quantum tunnelling of the vortex through the pinning barrier.
从宏观尺度到微观尺度,涡旋在各种气体和流体中自然存在。在稀薄原子气体的玻色 - 爱因斯坦凝聚体、超流氦和超导体中,涡旋的存在是系统量子性质的结果。超电流的量子化涡旋由穿透材料的磁通量产生,并且在决定材料特性和基于超导体的器件性能方面起着关键作用。在高温下,此类涡旋的动力学本质上是经典的,而在低温下,先前的实验表明存在集体量子动力学。然而,关于低温下涡旋隧穿是否发生的问题仅针对大量涡旋集合进行了研究。在此,我们研究超导约瑟夫森结中单个涡旋的量子动力学。通过测量涡旋从可控钉扎势中逃逸的统计数据,我们证明了在捕获势阱内涡旋能量的量子化能级的存在以及涡旋通过钉扎势垒的量子隧穿。