Green Christopher T, Puckett Larry J, Böhlke John Karl, Bekins Barbara A, Phillips Steven P, Kauffman Leon J, Denver Judith M, Johnson Henry M
U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA.
J Environ Qual. 2008 May 2;37(3):994-1009. doi: 10.2134/jeq2006.0419. Print 2008 May-Jun.
The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N(2) from denitrification increases with age. Stable isotopes and excess N(2) imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 micromol N L(-1)d(-1), comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination.
在美国四个重要的农业地区,研究了自然衰减减轻补给含水层中农业硝酸盐污染的能力。该研究采用实验室分析、现场测量以及水流和运移模型,对加利福尼亚州圣华金流域、内布拉斯加州埃尔克霍恩流域、华盛顿州亚基马流域和马里兰州切斯特流域的监测井断面(长度为0.5至2.5千米)进行了监测。地下水分析包括主要离子化学、溶解气体、氮和氧稳定同位素以及补给日期估算。沉积物分析包括潜在电子供体以及稳定氮和碳同位素。在每个地点以及基于含水层的中位数之间,溶解氧随地下水年龄降低,反硝化作用产生的过量N₂随年龄增加。稳定同位素和过量N₂表明,马里兰州和华盛顿州的地点反硝化活性最低,加利福尼亚州的地点部分反硝化,内布拉斯加州部分地点完全反硝化。在所有地点,补给电子供体浓度不足以解释溶解氧和硝酸盐的损失,这意味着残留的固相电子供体驱动氧化还原反应。反硝化的零级速率范围为0至0.14微摩尔N·L⁻¹·d⁻¹,与使用相同方法的其他研究观测结果相当。然而,文献中报道的许多值要高几个数量级,这归因于方法局限性以及对快速反硝化地点选择的偏差。在这些农田下方的浅层含水层中,反硝化作用的范围有限,需要数十年或更长时间的停留时间才能减轻现代硝酸盐污染。