Suppr超能文献

分层反应决定地下水硝酸盐的去除。

Stratification of reactivity determines nitrate removal in groundwater.

机构信息

Centre National de la Recherche Scientifique (CNRS), Géoscience Rennes - UMR 6118, Université de Rennes, 35042 Rennes, France;

Centre National de la Recherche Scientifique (CNRS), Géoscience Rennes - UMR 6118, Université de Rennes, 35042 Rennes, France.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2494-2499. doi: 10.1073/pnas.1816892116. Epub 2019 Jan 28.

Abstract

Biogeochemical reactions occur unevenly in space and time, but this heterogeneity is often simplified as a linear average due to sparse data, especially in subsurface environments where access is limited. For example, little is known about the spatial variability of groundwater denitrification, an important process in removing nitrate originating from agriculture and land use conversion. Information about the rate, arrangement, and extent of denitrification is needed to determine sustainable limits of human activity and to predict recovery time frames. Here, we developed and validated a method for inferring the spatial organization of sequential biogeochemical reactions in an aquifer in France. We applied it to five other aquifers in different geological settings located in the United States and compared results among 44 locations across the six aquifers to assess the generality of reactivity trends. Of the sampling locations, 79% showed pronounced increases of reactivity with depth. This suggests that previous estimates of denitrification have underestimated the capacity of deep aquifers to remove nitrate, while overestimating nitrate removal in shallow flow paths. Oxygen and nitrate reduction likely increases with depth because there is relatively little organic carbon in agricultural soils and because excess nitrate input has depleted solid phase electron donors near the surface. Our findings explain the long-standing conundrum of why apparent reaction rates of oxygen in aquifers are typically smaller than those of nitrate, which is energetically less favorable. This stratified reactivity framework is promising for mapping vertical reactivity trends in aquifers, generating new understanding of subsurface ecosystems and their capacity to remove contaminants.

摘要

生物地球化学反应在空间和时间上不均匀发生,但由于数据稀疏,特别是在地下环境中,由于进入受限,这种异质性通常被简化为线性平均值。例如,对于地下水反硝化作用的空间变异性,人们知之甚少,反硝化作用是去除农业和土地利用转化产生的硝酸盐的重要过程。需要了解反硝化作用的速率、排列和范围的信息,以确定人类活动的可持续极限,并预测恢复时间框架。在这里,我们开发并验证了一种推断法国含水层中顺序生物地球化学反应空间组织的方法。我们将其应用于美国不同地质背景下的另外五个含水层,并在六个含水层的 44 个位置之间比较结果,以评估反应性趋势的普遍性。在采样位置中,79%的位置表现出随深度增加的明显反应性增加。这表明先前对反硝化作用的估计低估了深层含水层去除硝酸盐的能力,同时高估了浅层流动路径中硝酸盐的去除能力。由于农业土壤中相对较少的有机碳,以及过量的硝酸盐输入耗尽了表面附近的固相电子供体,因此氧气和硝酸盐还原可能随深度增加。我们的发现解释了长期以来的难题,即为什么含水层中氧气的表观反应速率通常小于硝酸盐的反应速率,因为硝酸盐在能量上不太有利。这种分层反应性框架有望绘制含水层中垂直反应性趋势图,为地下生态系统及其去除污染物的能力提供新的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bab/6377467/9bc472a02767/pnas.1816892116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验