Suppr超能文献

使用收缩性微纤维聚合物包裹物对静脉移植物进行短暂弹性支撑。

Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap.

作者信息

El-Kurdi Mohammed S, Hong Yi, Stankus John J, Soletti Lorenzo, Wagner William R, Vorp David A

机构信息

Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, United States.

出版信息

Biomaterials. 2008 Aug;29(22):3213-20. doi: 10.1016/j.biomaterials.2008.04.009. Epub 2008 May 2.

Abstract

Arterial vein grafts (AVGs) often fail due to intimal hyperplasia, thrombosis, or accelerated atherosclerosis. Various approaches have been proposed to address AVG failure, including delivery of temporary mechanical support, many of which could be facilitated by perivascular placement of a biodegradable polymer wrap. The purpose of this work was to demonstrate that a polymer wrap can be applied to vein segments without compromising viability/function, and to demonstrate one potential application, i.e., gradually imposing the mid-wall circumferential wall stress (CWS) in wrapped veins exposed to arterial levels of pressure. Poly(ester urethane)urea, collagen, and elastin were combined in solution, and then electrospun onto freshly-excised porcine internal jugular vein segments. Tissue viability was assessed via Live/Dead staining for necrosis, and vasomotor challenge with epinephrine and sodium nitroprusside for functionality. Wrapped vein segments were also perfused for 24h within an ex vivo vascular perfusion system under arterial conditions (pressure = 120/80 mmHg; flow = 100 mL/min), and CWS was calculated every hour. Our results showed that the electrospinning process had no deleterious effects on tissue viability, and that the mid-wall CWS vs. time profile could be dictated through the composition and degradation of the electrospun wrap. This may have important clinical applications by enabling the engineering of an improved AVG.

摘要

动静脉移植物(AVG)常常因内膜增生、血栓形成或动脉粥样硬化加速而失效。人们已经提出了各种方法来解决AVG失效问题,包括提供临时机械支持,其中许多方法可通过在血管周围放置可生物降解的聚合物包裹物来实现。这项工作的目的是证明聚合物包裹物可以应用于静脉段而不损害其活力/功能,并证明一种潜在的应用,即在暴露于动脉压力水平的包裹静脉中逐渐施加中膜圆周壁应力(CWS)。将聚(酯脲)脲、胶原蛋白和弹性蛋白在溶液中混合,然后静电纺丝到新鲜切除的猪颈内静脉段上。通过用于检测坏死的活/死染色以及用于检测功能的肾上腺素和硝普钠血管舒缩刺激来评估组织活力。包裹的静脉段还在体外血管灌注系统中于动脉条件下(压力=120/80 mmHg;流量=100 mL/min)灌注24小时,并且每小时计算一次CWS。我们的结果表明,静电纺丝过程对组织活力没有有害影响,并且中膜CWS随时间的变化曲线可以通过静电纺丝包裹物的组成和降解来控制。这通过实现改进的AVG的工程化可能具有重要的临床应用。

相似文献

1
Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap.
Biomaterials. 2008 Aug;29(22):3213-20. doi: 10.1016/j.biomaterials.2008.04.009. Epub 2008 May 2.
2
Enhancement of tissue factor expression by vein segments exposed to coronary arterial hemodynamics.
J Vasc Surg. 1998 Mar;27(3):521-7. doi: 10.1016/s0741-5214(98)70327-1.
3
A biodegradable perivascular wrap for controlled, local and directed drug delivery.
J Control Release. 2012 Jul 10;161(1):81-9. doi: 10.1016/j.jconrel.2012.04.029. Epub 2012 Apr 27.
4
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.
Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:446-54. doi: 10.1016/j.msec.2014.09.016. Epub 2014 Sep 16.
6
Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts.
J Vasc Surg. 2000 Jan;31(1 Pt 1):69-83. doi: 10.1016/s0741-5214(00)70069-3.
7
Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins.
J Vasc Surg. 2013 May;57(5):1371-82. doi: 10.1016/j.jvs.2012.09.041. Epub 2013 Jan 23.
8
Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties.
J Mech Behav Biomed Mater. 2012 Jun;10:48-61. doi: 10.1016/j.jmbbm.2012.02.026. Epub 2012 Mar 14.
10
The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.
J Mech Behav Biomed Mater. 2016 Aug;61:410-418. doi: 10.1016/j.jmbbm.2016.04.011. Epub 2016 Apr 13.

引用本文的文献

1
The biomechanics and prevention of vein graft failure in coronary revascularization.
Vessel Plus. 2023;7. doi: 10.20517/2574-1209.2023.97. Epub 2023 Dec 14.
2
Bioengineered human arterial equivalent and its applications from vascular graft to disease modeling.
iScience. 2024 Oct 19;27(11):111215. doi: 10.1016/j.isci.2024.111215. eCollection 2024 Nov 15.
3
Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering.
Biomimetics (Basel). 2024 Jun 22;9(7):377. doi: 10.3390/biomimetics9070377.
5
Advances in preclinical surgical therapy of cardiovascular diseases.
Int J Surg. 2024 Aug 1;110(8):4965-4975. doi: 10.1097/JS9.0000000000001534.
6
Enhancing decellularized vascular scaffolds with PVDF and PCL reinforcement: a fused deposition modeling approach.
Front Cardiovasc Med. 2023 Nov 29;10:1257812. doi: 10.3389/fcvm.2023.1257812. eCollection 2023.
7
1-Year Patency of Biorestorative Polymeric Coronary Artery Bypass Grafts in an Ovine Model.
JACC Basic Transl Sci. 2022 Nov 9;8(1):19-34. doi: 10.1016/j.jacbts.2022.06.021. eCollection 2023 Jan.
8
Functional remodeling of an electrospun polydimethylsiloxane-based polyether urethane external vein graft support device in an ovine model.
J Biomed Mater Res A. 2019 Oct;107(10):2135-2149. doi: 10.1002/jbm.a.36724. Epub 2019 May 27.
9
10
Fabricated Elastin.
Adv Healthc Mater. 2015 Nov 18;4(16):2530-2556. doi: 10.1002/adhm.201400781. Epub 2015 Mar 13.

本文引用的文献

3
In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures.
Ann Thorac Surg. 2007 Feb;83(2):648-54. doi: 10.1016/j.athoracsur.2006.06.085.
4
Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing.
Biomaterials. 2006 Mar;27(8):1452-61. doi: 10.1016/j.biomaterials.2005.08.004. Epub 2005 Sep 6.
5
Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix.
Biomaterials. 2006 Feb;27(5):735-44. doi: 10.1016/j.biomaterials.2005.06.020. Epub 2005 Aug 10.
6
Shear stress and pressure modulate saphenous vein remodeling ex vivo.
J Biomech. 2005 Sep;38(9):1760-9. doi: 10.1016/j.jbiomech.2004.10.030. Epub 2005 Jan 4.
7
Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2048-58. doi: 10.1152/ajpheart.00934.2004. Epub 2005 Jul 8.
10
Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies.
J Biomed Mater Res A. 2004 Sep 15;70(4):603-14. doi: 10.1002/jbm.a.30122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验