Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) (UNMdP-CONICET), Mar del Plata, Argentina..
Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:446-54. doi: 10.1016/j.msec.2014.09.016. Epub 2014 Sep 16.
Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic graft development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (%C, 10(-2) mmHg) and the pressure-strain elastic modulus (E(Pε), 10(6) dyn cm(-2)) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38±0.21, 0.93±0.13 and 0.76±0.15) concomitant to an increase in EPε (10.57±0.97, 14.31±1.47 and 17.63±2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52±1.15 and 0.79±0.20) and an increase in E(Pε) (1.66±0.30 and 15.76±4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.
成功开发小直径血管移植物对生物材料工程来说是一个真正的挑战。在大多数情况下,由于天然血管和血管移植物之间存在机械不匹配,这些移植物在体内会失效。对真实天然血管的生物力学特性进行表征,可以为合成移植物的开发提供重要信息。电纺纳米纤维血管移植物作为解决这一问题的潜在定制解决方案出现了。聚乳酸(PLLA)电纺纳米纤维管状结构被制备并选为模型生物可吸收移植物。采用金标准和高分辨率超声技术,对聚(L-乳酸)(PLLA)电纺结构进行了体外特性的表征。在接近生理脉动压力条件下,通过压力-直径环方法和心血管植入物-管状血管假体国际标准中的标准,对移植物进行了测试。此外,还对羊股动脉进行了类似的评估。压力和直径变化的测量允许估计上述血管(移植物和动脉)的动态顺应性(%C,10(-2)mmHg)和压力-应变弹性模量(E(Pε),10(6)dyn cm(-2))。纳米纤维 PLLA 的%C(1.38±0.21、0.93±0.13 和 0.76±0.15)降低,与 EPε(10.57±0.97、14.31±1.47 和 17.63±2.61)增加相对应,分别对应于 50 至 90mmHg、80 至 120mmHg 和 100 至 150mmHg 的压力范围。此外,股动脉的%C(8.52±1.15 和 0.79±0.20)降低,E(Pε)(1.66±0.30 和 15.76±4.78)增加,分别对应于 50-90mmHg(弹性蛋白区)和 100-130mmHg(胶原区)的压力范围。在我们之前的工作中广泛应用的动脉力学框架,成功地用于体外表征 PLLA 血管移植物,尽管其应用可以直接扩展到清醒和慢性仪器化动物的体内实验。在胶原压力范围内,与股动脉观察到的机械性能相似,评估了这项工作中特殊设计和构建的电纺纳米纤维 PLLA 血管移植物。