Leconte P, Hudelot J P, Antony M
DEN/DER/SPRC/Physical Studies Laboratory, CEA Cadarache, 13108 Saint Paul Lez Durance Cedex, France.
Appl Radiat Isot. 2008 Oct;66(10):1450-8. doi: 10.1016/j.apradiso.2008.02.092. Epub 2008 Mar 13.
Studies of the nuclear fuel cycle require an accurate knowledge of the energy release from the decay of radioactive nuclides produced in a reactor, including precise half-life data for the short-lived radionuclides. Moreover, short-lived fission products are crucial for fission rate distribution measurements performed in low-power facilities, such as EOLE and MINERVE of CEA Cadarache [Fougeras, P., 2005. EOLE, MINERVE and MASURCA facilities and their associated neutron experimental programs. In: 13th International Conference on Nuclear Engineering, Beijing, China, 16-20 May 2005], and their nuclear decay data need to be known to high precision. For these reasons, the half-life of (92)Sr has been measured to solve a recently observed inconsistency identified with the quoted value in the main nuclear applications libraries (including JEFF3.1): T(1/2)=2.71+/-0.01 h [Parsa, B., Ashari, A., Goolvard, L., Nobar, Y.M., 1971. Decay scheme of 2.71 h (92)Sr. Nucl. Phys. A 175, 629-640]. An overestimation of 4.5% has been identified in this work, based on two independent methods. Specific gamma-ray spectrometry measurements on activated fissile foils have been carried out, using two HPGe detectors. Influencing factors such as net area measurements of photopeaks, pulse pile-up accuracy and dead time corrections in the presence of decaying activity are discussed. A new value has been obtained by combining eight series of measurements: T(1/2)=2.594+/-0.006 h. The uncertainty has been reduced by a factor of two with respect to previous evaluations. This measured value also shows good agreement with the most recent studies of T(1/2)=2.627+/-0.009 h [Nir-El, Y., 2003. Private Communications. Soreq Research Centre, Yavne, Israel].