Suppr超能文献

DNA转录因子蛋白是麦克斯韦妖吗?

Are DNA transcription factor proteins maxwellian demons?

作者信息

Hu Longhua, Grosberg Alexander Y, Bruinsma Robijn

机构信息

Department of Physics, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Biophys J. 2008 Aug;95(3):1151-6. doi: 10.1529/biophysj.108.129825. Epub 2008 May 2.

Abstract

Transcription factor (TF) proteins rapidly locate unique target sites on long genomic DNA molecules--and bind to them--during gene regulation. The search mechanism is known to involve a combination of three-dimensional diffusion through the bulk of the cell and one-dimensional sliding diffusion along the DNA. It is believed that the surprisingly high target binding rates of TF proteins relies on conformational fluctuations of the protein between a mobile state that is insensitive to the DNA sequence and an immobile state that is sequence-sensitive. Since TFs are not able to consume free energy during their search to obtain DNA sequence information, the Second Law of Thermodynamics must impose a strict limit on the efficiency of passive search mechanisms. In this article, we use a simple model for the protein conformational fluctuations to obtain the shortest binding time consistent with thermodynamics. The binding time is minimized if the spectrum of conformational fluctuations that take place during the search is impedance-matched to the large-scale conformational change that takes place at the target site. For parameter values appropriate for bacterial TF, this minimum binding time is within an order-of-magnitude of a limiting binding time corresponding to an idealized protein with instant target recognition. Numerical estimates suggest that typical bacteria operate in this regime of optimized conformational fluctuations.

摘要

转录因子(TF)蛋白在基因调控过程中能迅速在长基因组DNA分子上定位独特的靶位点并与之结合。已知搜索机制涉及在细胞主体内的三维扩散和沿DNA的一维滑动扩散。据信,TF蛋白惊人的高靶标结合率依赖于蛋白质在对DNA序列不敏感的移动状态和对序列敏感的固定状态之间的构象波动。由于转录因子在搜索过程中无法消耗自由能来获取DNA序列信息,热力学第二定律必然对被动搜索机制的效率施加严格限制。在本文中,我们使用一个简单的蛋白质构象波动模型来获得与热力学一致的最短结合时间。如果搜索过程中发生的构象波动谱与靶位点发生的大规模构象变化阻抗匹配,则结合时间将最小化。对于适合细菌TF的参数值,这个最小结合时间与具有即时靶标识别能力的理想化蛋白质的极限结合时间在一个数量级内。数值估计表明,典型细菌在这种优化构象波动的状态下运作。

相似文献

1
Are DNA transcription factor proteins maxwellian demons?
Biophys J. 2008 Aug;95(3):1151-6. doi: 10.1529/biophysj.108.129825. Epub 2008 May 2.
2
Facilitated diffusion on confined DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021919. doi: 10.1103/PhysRevE.85.021919. Epub 2012 Feb 22.
3
Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential.
Biophys J. 2004 Dec;87(6):4021-35. doi: 10.1529/biophysj.104.050765. Epub 2004 Oct 1.
4
Generalized theory of site-specific DNA-protein interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011901. doi: 10.1103/PhysRevE.76.011901. Epub 2007 Jul 2.
5
Mechanism of DNA compaction by yeast mitochondrial protein Abf2p.
Biophys J. 2004 Mar;86(3):1632-9. doi: 10.1016/S0006-3495(04)74231-9.
6
How does a protein search for the specific site on DNA: The role of disorder.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021903. doi: 10.1103/PhysRevE.74.021903. Epub 2006 Aug 3.
7
Packaging effects on site-specific DNA-protein interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061920. doi: 10.1103/PhysRevE.79.061920. Epub 2009 Jun 19.
8
Facilitated diffusion of DNA-binding proteins: Simulation of large systems.
J Chem Phys. 2006 Jul 7;125(1):014906. doi: 10.1063/1.2211614.
9
Protein sliding and hopping kinetics on DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021907. doi: 10.1103/PhysRevE.83.021907. Epub 2011 Feb 16.
10
How motif environment influences transcription factor search dynamics: Finding a needle in a haystack.
Bioessays. 2016 Jul;38(7):605-12. doi: 10.1002/bies.201600005. Epub 2016 May 19.

引用本文的文献

1
Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2102621118.
2
Quantifying the two-state facilitated diffusion model of protein-DNA interactions.
Nucleic Acids Res. 2019 Jun 20;47(11):5530-5538. doi: 10.1093/nar/gkz308.
3
Mitotic chromosome binding predicts transcription factor properties in interphase.
Nat Commun. 2019 Jan 30;10(1):487. doi: 10.1038/s41467-019-08417-5.
4
Mechanisms of Protein Search for Targets on DNA: Theoretical Insights.
Molecules. 2018 Aug 22;23(9):2106. doi: 10.3390/molecules23092106.
5
Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins.
Prog Biophys Mol Biol. 2017 Aug;127:93-104. doi: 10.1016/j.pbiomolbio.2016.12.004. Epub 2016 Dec 8.
7
Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.
PLoS One. 2015 Jul 13;10(7):e0132675. doi: 10.1371/journal.pone.0132675. eCollection 2015.
8
Real sequence effects on the search dynamics of transcription factors on DNA.
Sci Rep. 2015 Jul 8;5:10072. doi: 10.1038/srep10072.
9
On the Possibility of Facilitated Diffusion of Dendrimers Along DNA.
J Phys Chem B. 2015 Jun 11;119(23):6894-904. doi: 10.1021/acs.jpcb.5b02090. Epub 2015 Jun 2.
10
Modeling Viral Capsid Assembly.
Adv Chem Phys. 2014;155:1-68. doi: 10.1002/9781118755815.ch01.

本文引用的文献

1
How a protein searches for its specific site on DNA: the role of intersegment transfer.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051909. doi: 10.1103/PhysRevE.76.051909. Epub 2007 Nov 9.
2
Probing transcription factor dynamics at the single-molecule level in a living cell.
Science. 2007 May 25;316(5828):1191-4. doi: 10.1126/science.1141967.
4
How does a protein search for the specific site on DNA: The role of disorder.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021903. doi: 10.1103/PhysRevE.74.021903. Epub 2006 Aug 3.
5
Single molecule measurements of repressor protein 1D diffusion on DNA.
Phys Rev Lett. 2006 Jul 28;97(4):048302. doi: 10.1103/PhysRevLett.97.048302. Epub 2006 Jul 27.
6
Optimal target search on a fast-folding polymer chain with volume exchange.
Phys Rev Lett. 2005 Dec 31;95(26):260603. doi: 10.1103/PhysRevLett.95.260603. Epub 2005 Dec 22.
7
How proteins search for their specific sites on DNA: the role of DNA conformation.
Biophys J. 2006 Apr 15;90(8):2731-44. doi: 10.1529/biophysj.105.078162. Epub 2006 Feb 3.
8
Target search of N sliding proteins on a DNA.
Biophys J. 2005 Aug;89(2):895-902. doi: 10.1529/biophysj.104.057612. Epub 2005 May 20.
9
Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential.
Biophys J. 2004 Dec;87(6):4021-35. doi: 10.1529/biophysj.104.050765. Epub 2004 Oct 1.
10
Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes.
Science. 2004 Jul 16;305(5682):386-9. doi: 10.1126/science.1097064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验