DeSantis Michael C, Li Je-Luen, Wang Y M
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021907. doi: 10.1103/PhysRevE.83.021907. Epub 2011 Feb 16.
Using Monte Carlo simulations, we deconvolved the sliding and hopping kinetics of GFP-LacI proteins on elongated DNA from their experimentally observed seconds-long diffusion trajectories. Our simulations suggest the following results: (i) in each diffusion trajectory, a protein makes on average hundreds of alternating slides and hops with a mean sliding time of several tens of milliseconds; (ii) sliding dominates the root-mean-square displacement of fast diffusion trajectories, whereas hopping dominates slow ones; (iii) flow and variations in salt concentration have limited effects on hopping kinetics, while in vivo DNA configuration is not expected to influence sliding kinetics; and (iv) the rate of occurrence for hops longer than 200 nm agrees with experimental data for EcoRV proteins.
通过蒙特卡罗模拟,我们从实验观察到的长达数秒的扩散轨迹中反卷积出了GFP-LacI蛋白在拉长的DNA上的滑动和跳跃动力学。我们的模拟结果如下:(i) 在每个扩散轨迹中,一个蛋白平均进行数百次交替的滑动和跳跃,平均滑动时间为几十毫秒;(ii) 滑动主导快速扩散轨迹的均方根位移,而跳跃主导慢速扩散轨迹;(iii) 流动和盐浓度变化对跳跃动力学的影响有限,而体内DNA构型预计不会影响滑动动力学;(iv) 超过200 nm的跳跃发生率与EcoRV蛋白的实验数据相符。